background image


 

                               HEALING &TISSUE REPAIR 

       REGENERATION & HEALING BY FIBROSIS; 

  Regeneration: complete reinstitution of the damaged components of the affected tissue 

i.e. the tissue essentially returns to a normal state 

  Healing is a reparative process characterized by laying down of connective (fibrous) 

tissue that results in scar formation. This mode occurs when 

1-The injured tissues are incapable of complete regeneration. 

      2- The supporting structures of the tissue are severely damaged. 

Although the resulting fibrous scar is not normal, it provides enough structural stability that 
allows the injured tissue to function.  

Repair involves:  

a. The proliferation of various cells. 

      b. Close interactions between cells and the extracellular matrix (ECM).  

Therefore, an understanding of the process of repair requires some knowledge of the control of 
cell proliferation and the functions of the ECM. 

THE CONTROL OF CELL PROLIFERATION 

Several cell types proliferate during tissue repair. These include : 

1. The remnants of the injured tissue (which attempt to restore normal structure). 

2. Vascular endothelial cells (to create new vessels that provide the nutrients for the 
repair process) 

3. Fibroblasts (the source of the fibrous tissue that fills defects).  

The proliferation of the above cell types is driven by growth factors. The normal size of cell 
populations in any given tissue is determined by a balance of cell proliferation, cell death by 
apoptosis, and emergence of new differentiated cells from stem cells. 

THE CELL CYCLE : The cell cycle represents the sequence of events that control DNA 
replication & mitosis in the proliferation of cells. It consists of a series of steps at which the cell 
checks for the accuracy of the process  and work to proceed to the next step.  

The cycle consists of: 1- the presynthetic growth phase 1 (G

1

) 


background image


 

2-the DNA synthesis phase(S)  3-the premitotic growth phase2(G

2

)  4-and the mitotic phase (M)

  Non-dividing cells are either in cell cycle arrest in G

1

 or they exit the cycle to enter a phase 

called G

0

.   

Any stimulus that initiates cell proliferation, such as exposure to growth factors, needs to 
promote the G0/G1 transition and the entry of cells into the G1.  

Further progression is determined by the ability of the cell to pass through an intrinsic quality 
control mechanism for cell integrity, known as checkpoint control.  

Checkpoint controls prevent DNA replication or mitosis of damaged cells and either transiently 
stop the cell cycle to allow for DNA repair or eliminate irreversibly damaged cells by apoptosis. 

Progression through the cell cycle from G1 is regulated by proteins called cyclins, which form 
complexes with enzymes called cyclin-dependent kinases (CDKs).  

These complexes regulate the phosphorylation of proteins involved in cell cycle progression 
leading to DNA replication and mitosis, and thus are required for cell cycle progression. 

A major action of growth factors is to overcome the checkpoint controls by liberating the 
suppression of CDK activity. 

 Once cells enter the S phase, the DNA is replicated and the cell progresses through G2 and 
mitosis. 

Proliferative Capacities of Tissues

The tissues of the body are divided into three groups: 

1-Continuously Dividing Tissues (labile tissues): cells of these tissues are continuously being 
lost and replaced by maturation from stem cells and by proliferation of mature cells.  

Labile cells include: hematopoietic cells in the bone marrow and the majority of surface 
epithelia. These tissues can readily regenerate after injury provided the pool of stem cells is 
preserved. 

2. Stable Tissues: Cells of these tissues are quiescent (in the G0 stage of the cell cycle) and have 
only minimal replicative activity in their normal state.  

These cells are capable of proliferating in response to injury or loss of tissue mass. Stable cells 
constitute the parenchyma of most solid tissues, such as liver cells They also include endothelial 
cells, fibroblasts, and smooth muscle cells; the proliferation of these cells is particularly 
important in wound healing. With the exception of liver, stable tissues have a limited capacity to 
regenerate after injury. 


background image


 

3-Permanent Tissues: Cells of these tissues are terminally differentiated and nonproliferative in 
postnatal life. The majority of neurons and cardiac muscle cells belong to this category. 
Accordingly, injury to brain or heart is irreversible and results in a scar. Skeletal muscle is 
usually classified as a permanent tissue. 

Stem Cells: 

In most continuously dividing tissues the mature cells are terminally differentiated and short-
lived.  

As mature cells die they are compensated for by identical differentiated cells generated from 
stem cells. Thus, in these tissues there is a homeostatic equilibrium between the replication and 
differentiation of stem cells and the death of the mature, fully differentiated cells.  

Such relationships are particularly evident in the multilayered epithelium of the skin and the 
gastrointestinal tract, in which stem cell positions have been identified near the basal layer of the 
epithelium. 

Cells differentiate progressively as they migrate to the upper layers of the epithelium; they 
ultimately die and are shed from the surface of the tissue. 

Stem cells are characterized by two important properties:  

1. Self-renewal capacity  

2. Asymmetric replication which  means that after each cell division, some progeny enter a 
differentiation pathway, while others remain undifferentiated, retaining their self-renewal 
capacity. 

Stem cells with the capacity to generate multiple cell lineages (pluripotent stem cells) can be 
isolated from embryos and are called embryonic stem (ES) cells.  

Stem cells are normally present in proliferative tissues and generate cell lineages specific for the 
tissue.  It  is  now  recognized  that  stem  cells  with  the  capacity  to  generate  multiple  lineages  are 
present in the bone marrow and several other tissues of adult individuals. These cells are called 
tissue  stem  cells  or  adult  stem  cells.  Bone  marrow  stem  cells  have  the  ability  to  generate  fat, 
cartilage,  bone,  endothelium,  and  muscle.
  Regenerative  medicine  has  a  main  objective  of 
regeneration and repopulation of damaged organs using ES or adult stem cells. One of the most 
exciting prospects in this field is the type of stem cell therapy known as therapeutic cloning.  

GROWTH FACTORS; 

Cell proliferation can be triggered by : 1. Growth factors 2. Hormones   3. Cytokines  4. Signals 
from the ECM  


background image


 

The  polypeptide  growth  factors  have  a  major  role  of  promoting  cell  survival  and  proliferation, 
which  are  important  in  regeneration  and  healing.  These  proteins  expand  cell  populations  by 
stimulating cell division as well as by promoting cell survival through protection from apoptotic 
death.  Most  growth  factors  also  stimulate  migration,  differentiation,  &  the  synthesis  of 
specialized proteins (such as collagen in fibroblasts). 

They induce cell proliferation by binding to specific receptors and by doing so affect the 
expression of genes through :  

1. Relieving blocks on cell cycle progression (thus promoting replication),  

2. Preventing apoptosis 

3. Enhancing the synthesis of cellular proteins in preparation for mitosis  

EXTRACELLULAR MATRIX (ECM) AND CELL-MATRIX INTERACTIONS 

Tissue  repair  depends  not  only  on  growth  factor  activity  but  also  on  interactions  between  cells 
and ECM components. The ECM is a dynamic, constantly remodeling macromolecular complex 
synthesized  locally,  which  assembles  into  a  network  that  surrounds  cells.  It  constitutes  a 
significant proportion of any tissue. By supplying a substrate for cell adhesion and serving as a 
reservoir  for  growth  factors.ECM  regulates  the  proliferation,  movement,  and  differentiation  of 
the  cells  living  within  it.  Synthesis  and  degradation  of  ECM  accompanies  wound  healing  & 
chronic fibrotic processes. ECM found in two basic forms:  

1-Interstitial matrix:It  presents  in the spaces between mesenchymal (connective tissue) cells, 
and between epithelium and supportive vascular and smooth muscle structures. It is synthesized 
by the mesenchymal cells (e.g., fibroblasts). Its major constituents are: 

1-Fibrillar and nonfibrillar collagens, 2-Fibronectin, 3-Elastin, 4-Proteoglycans, and   

5-Hyaluronate, 

2. Basement membrane: 

   Which lies beneath the epithelium and is synthesized by overlying epithelium and 

underlying mesenchymal cells. 

  Its major constituents are amorphous nonfibrillar type IV collagen and laminin. 

Adhesive Glycoproteins and Adhesion Receptors 

Adhesive glycoproteins and adhesion receptors are structurally diverse molecules involved in: 

1-cell-to-cell adhesion 2-the linkage between cells and ECM. 3- binding between ECM 
components. 


background image


 

The adhesive glycoproteins include: fibronectin (major component of the interstitial ECM) and  

laminin (major constituent of basement membrane).  

The adhesion receptors, also known as cell adhesion molecules (CAMs), are grouped into four 
families: 1. Immunoglobulins , 2. Selectins , 3. Cadherins  and  4. Integrins 

 

CELL AND TISSUE REGENERATION 

Cell renewal occurs continuously in labile tissues, such as the bone marrow, gut epithelium, and 
the  skin.  Damage  to  epithelia  or  an  increased  loss  of  blood  cells  can  be  corrected  by  the 
proliferation and differentiation of stem cells and, in the bone marrow, by proliferation of more 
differentiated progenitors.  

The renewal of hematopoietic cells is driven by growth factors called colony-stimulative factors 
(CSFs), which are produced in response to increased consumption or loss of blood cells. 

The  regenerative  response  of  the  liver  that  occurs  after  surgical  removal  of  hepatic  tissue  is 
striking.  Up  to  60%  of  the  liver  may  be  removed  in  a  procedure  called  living-donor 
transplantation,  in  which  a  portion  of  the  liver  is  resected  from  a  normal  individual  and  is 
transplanted  into  a  recipient  with  end-stage  liver  disease  ,  or  after  partial  hepatectomies 
performed  for  tumor  removal.  In  such  cases,  the  tissue  resection  triggers  proliferation  of  the 
remaining hepatocytes (normally quiescent). Experimentally, hepatocyte replication after partial 
hepatectomy is initiated by cytokines (e.g., tumor necrosis factor [TNF] and interleukin 6 [IL-6). 

It should be emphasized that extensive regeneration or compensatory hyperplasia can occur only 
if the residual tissue is structurally and functionally intact, as after partial surgical resection. By 
contrast, if the tissue is damaged by infection or inflammation, regeneration is incomplete and is 
accompanied by scarring. 

REPAIR BY CONNECTIVE TISSUE 

Healing or repair by connective tissue is encountered if 

1. A severe or persistent (chronic) tissue injury that result in damage to parenchymal cells . 

2. Injury affects nondividing cells. 

Under these conditions, repair occurs by replacement of the nonregenerated cells with connective 
tissue, or by a combination of regeneration of some cells and scar formation. 

Repair begins within 24 hours of injury by the emigration of fibroblasts and the induction of 
fibroblast and endothelial cell proliferation. By 3 to 5 days, a specialized type of tissue that is 
characteristic of healing, called granulation tissue is apparent.  


background image


 

The term granulation tissue derives from the pink, soft, granular gross appearance, such as that 
seen  beneath  the  scab  of  a  skin  wound.Its  microscopic  appearance  is  characterized  by 
proliferation  of  fibroblasts  and  new  thin-walled,  delicate  capillaries  (angiogenesis),  in  a  loose 
ECM.  Granulation  tissue  then  progressively  accumulates  connective  tissue  matrix,  eventually 
resulting in the formation of a scar which may remodel over time. 

Repair by connective tissue deposition consists of four sequential processes: 

1-Formation of new blood vessels (angiogenesis) 2-Migration and proliferation of fibroblasts 

3-Deposition of ECM (scar formation)  

4-Maturation and reorganization of the fibrous tissue (remodeling) 

 

Angiogenesis (neovascularization: The preexisting vessels send out capillary sprouts to 

produce new vessels.  

Angiogenesis is a critical process: 1-in healing at sites of injury     2-in the development of 
collateral circulations at sites of ischemia   3-and in allowing tumors to increase in size beyond 
the limits of their original blood supply.  

New vessels formed during angiogenesis are leaky. This leakiness explains why granulation 
tissue is often edematous, and
 accounts in part for the edema that may persist in healing 
wounds long after the acute inflammatory response has resolved. 

Migration of Fibroblasts and ECM Deposition (Scar Formation) 

Scar formation builds on the granulation tissue framework of new vessels and loose ECM that 
develop early at the repair site. It occurs in two steps: 1. Migration and proliferation of 
fibroblasts into the site of injury and 2. Deposition of ECM by these cells. 

Macrophages, in particular, are important cellular constituents of granulation tissue, and besides 
clearing extracellular debris and fibrin at the site of injury. 

Healing by First Intention 

One  of  the  simplest  examples  of  wound  repair  is  the  healing  of  a  clean,  uninfected  surgical 
incision approximated by surgical sutures. This is referred to as primary union or healing by first 
intention. The incision causes only focal disruption of epithelial basement membrane continuity 
and death of a relatively few epithelial and connective tissue cells.  

As a result, epithelial regeneration predominates over fibrosis. A small scar is formed, but there 
is minimal wound contraction.  The narrow incisional space first fills with fibrin-clotted blood. 

Those events following these steps; 


background image


 

1-Within 24 hours, neutrophils are seen at the incision margin, migrating toward the fibrin clot. 

2-Within 24 to 48 hours, epithelial cells from both edges have begun to migrate and proliferate 
along the dermis. The cells meet in the midline beneath the surface scab, yielding a thin but 
continuous epithelial layer. 

3-By day 3, neutrophils have been largely replaced by macrophages, and granulation tissue 
progressively invades the incision space. Epithelial cell proliferation continues, yielding a 
thickened epidermal covering layer. 

4-By day 5, neovascularization reaches its peak as granulation tissue fills the incisional space. 
The epidermis recovers its normal thickness as differentiation of surface cells yields a mature 
epidermal architecture with surface keratinization. 

5-During the second week, there is continued collagen accumulation and fibroblast proliferation 
that bridge the incision. The leukocyte infiltrate, edema, and increased vascularity are diminished 

6-By the end of the first month, the scar comprises a cellular connective tissue largely devoid of 
inflammatory cells and covered by an essentially normal epidermis.  

The tensile strength of the wound increases with time. However, the dermal appendages 
destroyed
 in the line of the incision are permanently lost

Healing by Second Intention (healing by secondary union

When cell or tissue loss is more extensive, the repair process is more complex, the inflammatory 
reaction  is  more  intense,  there  is  abundant  development  of  granulation  tissue,  and  the  wound 
contracts  by  the  action  of  myofibroblasts.  This  is  followed  by  accumulation  of  ECM  and 
formation of a large scar. This mode of healing occurs in 1-Large wounds     2-Abscesses  

 3-Ulcerations 

Secondary healing differs from primary healing in several respects: 

1-A larger clot or scab rich in fibrin and fibronectin forms at the surface of the wound. 

2-Inflammation is more intense because large tissue defects have a greater volume of necrotic 
debris, exudate, and fibrin that must be removed. 

3-Much larger amounts of granulation tissue are formed. A greater volume of granulation tissue 
generally results in a greater mass of scar tissue. 

4-Secondary  healing  involves  wound  contraction.  Within  6  weeks,  for  example,  large  skin 
defects may be reduced to 5% to 10% of their original size, largely by contraction. This process 
has  been  ascribed  to  the  presence  of  myofibroblasts,  which  are  modified  fibroblasts  exhibiting 
many of the ultrastructural and functional features of contractile smooth muscle cells. 


background image


 

5-Wound strength reaches approximately 70% to 80% of normal by 3 months but usually does 
not substantially improve beyond that point. 

PATHOLOGIC ASPECTS OF REPAIR 

Wound  healing  may  be  affected  by  several  external  or  internal  influences  that  reduce  the 
quality or adequacy of the reparative process
. Particularly important are infections and diabetes.  

1. Infection is the single most important cause of delay in healing; it prolongs the inflammation 
phase of the process and potentially increases the local tissue injury.  

2. Nutrition has profound effects on wound healing; protein deficiency & vitamin C deficiency, 
inhibits collagen synthesis and retards healing.  

3. Glucocorticoids (steroids) have anti-inflammatory effects, and their administration may result 
in poor wound strength due to diminished fibrosis. 

4. Mechanical variables such as increased local pressure or torsion may cause wounds to pull 
apart, or dehisce i.e. open out or gape.  

5. Poor perfusion, due either to arteriosclerosis and diabetes or to obstructed venous drainage 
(e.g. in varicose veins), also impairs healing 

6. Foreign bodies such as fragments of steel, glass, or even bone impede healing. 

7. The type (and volume) of tissue injured is critical. Complete restoration can occur only in 
tissues composed of stable and labile cells; 

8. The location of the injury and the character of the tissue in which the injury occurs are also 
important.  

For example, inflammation arising in tissue spaces (e.g., pleural, peritoneal, synovial cavities) 
develops extensive exudates 

Aberrations of cell growth and ECM production  

This may occur even in what begins as normal wound healing.  

1.  Keloid refers to the accumulation of exuberant amounts of collagen that give rise to 

prominent, raised scars. 

2.  Disabling fibrosis associated with chronic inflammatory diseases such as rheumatoid 

arthritis, pulmonary fibrosis 

3.   Exuberant granulation: healing wounds may also generate excessive granulation tissue 

that protrudes above the level of the surrounding skin and hinders re-epithelialization.  
 


background image


 

Healing of fractures 

Fractures  rank  among  the  most  common  bone  pathologies.  They  are  classified  as:  complete  or 
incomplete  closed  when  the  overlying  tissue  is  intact,  or  compound  when  the  fracture  extends 
into the overlying skin  comminuted when the bone is  splintered  displaced  , when the fractured 
bone is not aligned 

In all cases, the repair of a fracture is a highly regulated process that involves overlapping stages:  

 The trauma of the bone fracture ruptures associated blood vessels; the  resulting blood coagulum 
creates  a  fibrin  mesh  scaffold  to  recruit  inflammatory  cells,  fibroblasts,  and  endothelium.  
platelets  and  inflammatory  cells  subsequently  release  a  host  of  cytokines  (e.g.,  platelet-derived 
growth  factor  and  FGF)  that  activate  bone  progenitor  cells,  and  within  a  week,  the  involved 
tissue is primed for new matrix synthesis. This soft tissue callus is able to hold the ends of the 
fractured bone in apposition, but it is non-calcified and cannot support weight bearing. 

Bone progenitors in the medullary cavity deposit new foci of woven bone, and activated 
mesenchymal cells at the fracture site differentiate into cartilage-synthesizing chondroblasts. 

 In uncomplicated fractures, this early repair process peaks within 2-3 weeks. The newly formed 
cartilage  acts  as  a  nidus  for  endochondral  ossification,  recapitulating  the  process  of  bone 
formation  in  epiphyseal  growth  plates.  This  connects  the  trabeculae  in  adjacent  bone.  With 
ossification,  the  fractured  ends  are  bridged  by  a  bony  callus.Although  excess  fibrous  tissue, 
cartilage,  and  bone  are  produced  in  the  early  callus,  subsequent  weight-bearing  leads  to 
resorption of the callus from non-stressed sites; at the same time there is fortification of regions 
that  support  greater  loads.  This  callus  remodeling  restores  the  original  size  and  shape  of  the 
bone, including the spongy cancellous architecture of the medullary cavity.   

   
 




رفعت المحاضرة من قبل: Abdalmalik Abdullateef
المشاهدات: لقد قام 20 عضواً و 196 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل