background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

1

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Biochemistry and 

Disorders of  Hormones 

of the   Hypothalamic and 

pituitary gland 

(hypothalamus and 

pituitary axis)  

1. Hormones of the hypothalamus 

Prof. Dr. Hedef Dhafir El-Yassin 2013 


background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

2

 

Lecture 3 

 

 

 

 

 

 

 

 

Thursday 28/2 

 

Objectives: 

1.  to describe the structure and function of the hypothalamus 

2.  to list the hormones secreted from the hypothalamus  

3.  to understand how the hypothalamus controls the secrection of hormones of 

the pituitary gland.  

 

 

 

 

1. Hormones of the hypothalamus 

The hypothalamus is an integral part of the substance of the brain. A small cone-shaped 

structure, it projects downward, ending in the pituitary stalk, a tubular connection to the 

pituitary gland, which is a double lobed structure that produces the endocrine secretions 

when stimulated by the hypothalamus.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

3

 

The hypothalamus controls each lobe of the pituitary slightly differently. 

1.  control of Anterior lobe 

a.  The hypothalamus acts as an endocrine gland. 

b.  Hormones are sent from the hypothalamus to the anterior pituitary via a 

blood vessel called the portal vein. 

c.  The target tissue is the anterior lobe of the pituitary e.g. LH, TSH, and FSH. 

 

 

2.  control of the Posterior lobe 

d.  Neuro-hormones are 

synthesized in the 

hypothalamus neurons. 

They are transported and 

stored in vesicles in the 

axon ending located in the 

posterior pituitary. 

e.  Nerve impulses travel down 

the axon into the posterior 

pituitary. This causes the 

release of the vesicles of 

hormones into the blood 

stream at the posterior 

pituitary e.g. oxytocin , and 

ADH. 

 

 

 

 

 

 

 

 

 

 
 


background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

4

 

Many hormonal systems involve hypothalamus. 
 
Table: Hypothalamic hypophysial-target gland hormones form integrated feedback loops 

 

Hypothalamic hormones 

No. of A.A 

in 

structure 

Pituitary 

Hormone 

Affected

1

 

Target Gland 

Hormone 

Affected 

Thyrotropin-releasing hormone 

(TRH) 

TSH (PRL) 

T

3

, T

Gonadotropin-releasing 

hormone (GnRH) 

10 

LH, FSH 

Androgens, 

estrogens, 

progestins 

Corticotropin-releasing 

hormone (CRH) 

41 

ACTH 

Cortisol 

Growth hormone-releasing 

hormone(GHRH or GRH)  

49 

GH 

IGF-1 

Prolactin  release factor 

Not 

established 

PRL 

neurohormones 

Somatostatin (Growth hormone 

release-inhibiting hormone; 

somatotropin release-inhibiting 

hormone (GHRIH or SRIH) 

 

14 

GH (TSH, FSH, 

ACTH) 

IGK-1; T

3

 andT

4

 

Prolactin- release-inhibiting 

hormones (Dopamine and GAP) 

(PRIH or PIH) 

 

PRL 

neurohormones 

1

The hypothalamic hormone has a secondary or lesser effect on the hormones in parentheses. 

 

 

 

 

 

 

 

 


background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

5

 

 

1)  Thyrotropin-releasing hormone(TRH) 

Is the simplest of the hypothalamic neuropeptides. It consists essentially of three amino 

acids. Its basic sequence is glutamic acid-histidine-proline, The simplicity of this structure 

is deceiving for TRH is involved in an extraordinary array of functions. Some of which are: 

a.  It stimulates the secretion of thyroid-stimulating hormone from the pituitary. 

b.  It also affects the secretion of prolactin from the pituitary. 

The TRH-secreting cells are subject to stimulatory and inhibitory influences from higher 

centers in the brain and they also are inhibited by circulating thyroid hormone. 

  

2)  Gonadotropin-releasing hormone (GnRH) 

Also known as luteinizing hormone-releasing hormone (LHRH), is a peptide chain of 10 

amino acids. It stimulates the synthesis and release of the two pituitary gonadotropins, 

luteinizing hormone (LH) and follicle-stimulating hormone (FSH).  

 

3)  Corticotropin-releasing hormone (CRH) 

Is a large peptide consisting of a single chain of 41 amino acids. It stimulates not only 

secretion of corticotropin in the pituitary gland but also the synthesis of corticotropin in the 

corticotropin-producing cells (corticotrophs) of the anterior lobe of the pituitary gland. Many 

factors, both neurogenic and hormonal, regulate the secretion of CRH. Among the 

hormones that play an important role in modulating the influence of CRH is cortisol, the 

major hormone secreted by the adrenal cortex, which, as part of the negative feedback 

mechanism. Vasopressin, the major regulator of the body's excretion of water, has an 

additional ancillary role in stimulating the secretion of CRH. 

Excessive secretion of CRH leads to an increase in the size and number of corticotrophs 

in the pituitary gland, often resulting in a pituitary tumor. This, in turn, leads to excessive 

stimulation of the adrenal cortex, resulting in high circulating levels of adrenocortical 

hormones, the clinical manifestations of which are known as Cushing's syndrome. 

Conversely, a deficiency of CRH-producing cells can, by a lack of stimulation of the 

pituitary and adrenal cortical cells, result in adrenocortical deficiency.  

 

 

 

 


background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

6

 

4)  Growth hormone-releasing hormone (GHRH or GRH)  

Like CRH, growth hormone-releasing hormone (GHRH) is a large peptide. A number of 

forms have been described that differ from one another only in minor details and in the 

number of amino acids (varying from 37 to 49). It is stimulated by stresses, including 

physical exercise, and secretion is blocked by a powerful inhibitor called somatostatin. 

Negative feedback control of GHRH secretion is mediated largely through compounds 

called somatomedins, growth-promoting hormones that are generated when tissues are 

exposed to growth hormone itself. 

Isolated deficiency of GHRH (in which there is normal functioning of the hypothalamus 

except for this deficiency) may be the cause of one form of dwarfism, a general term 

applied to all individuals with abnormally small stature. 

 

5)  Prolactin release factor (PRF):  

Appears to be released from the hypothalamus in a pulsatile fashion and it is the 

fluctuation in PRF that regulates the circulating level of prolactin. 

 

6)  Somatostatin (Growth hormone release-inhibiting hormone; somatotropin 

release-inhibiting hormone ( GHRIH or SRIH) 

Somatostatin refers to a number of polypeptides consisting of chains of 14 to 28 amino 

acids. Somatostatin is also a powerful inhibitor of pituitary TSH secretion. Somatostatin, 

like TRH, is widely distributed in the central nervous system and in other tissues. It serves 

an important paracrine function in the islets of Langerhans, by blocking the secretion of 

both insulin and glucagon from adjacent cells. Somatostatin has emerged not only as a 

powerful blocker of the secretion of GH, insulin, glucagon, and other hormones but also as 

a potent inhibitor of many functions of the gastrointestinal tract, including the secretion of 

stomach acid, the secretion of pancreatic enzymes, and the process of intestinal 

absorption. 

 

 

 

 

 

 

 


background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

7

 

7)  Prolactin release-inhibiting hormones (Dopamine and GAP) 

GAP= GnRH-associated peptide 

The hypothalamic regulation of prolactin secretion from the pituitary is different from the 

hypothalamic regulation of other pituitary hormones in two respects:  

1.  First, the hypothalamus primarily inhibits rather than stimulates the release of 

prolactin from the pituitary.  

2.  Second, this major inhibiting factor is not a neuropeptide, but rather the 

neurotransmitter dopamine. Prolactin deficiency is known to occur, but only rarely. 

Excessive prolactin production (hyperprolactinemia) is a common endocrine 

abnormality. 

 

Quick quiz 1

which of the following statement is incorrect for hypothalamus? 

1.  it releases the hormones which regulate the secretion of anterior pituitary gland 

2.  hypothalamic hormones are absent from the tissues 

3.  the higher brain enters are necessary to control their secretion 

4.  the prolactin has no release hormone but has release inhibiting hormone 

 

Quick quiz 2

one of the following hormones is synthesized in the hypothalamus but 

not secreted from it: 

1.  vasspressin 

2.  MSH 

3.  prolactin 

4.  serotonin 

 

Conclusion 

1.  The hypothalamus is a small cone-shaped structure, part of the brain, it projects 

downward, ending in the pituitary stalk. 

2.  The pituitary gland, a roundish organ that lies immediately beneath the 

hypothalamus composed of two distinctive parts:  

a.  The anterior pituitary (adenohypophysis). 

b.  The posterior pituitary (neurohypophysis) 

3.  The hypothalamus controls the secrection of hormones from each lobe of the 

pituitary slightly differently 

 


background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

8

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Biochemistry and 

Disorders of  Hormones 

of the   Hypothalamic and 

pituitary gland 

(hypothalamus and 

pituitary axis 

2. Hormones of the pituitary gland 

Prof. Dr. Hedef Dhafir El-Yassin 2013

 


background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

9

 

Lecture 4 

 

 

 

 

 

 

 

 

Sunday 3/3 

Objectives: 

1.  to describe the structure and function of the pituitary gland 

2.  to list the hormones secreted from the pituitary gland 

3.  state the peripheral effects of hormone release for each hormone synthesized 

or stored in the pituitary gland 

4.  to state the peripheral effects of increased and decreased hormone release 

for each hormone synthesized or stored in the pituitary gland. 

 

2. Hormones of the Pituitary gland  

The pituitary gland, also known as 

the hypophysis, is a roundish organ 

that lies immediately beneath the 

hypothalamus.  

Careful examination of the pituitary 

gland reveals that it composed of 

two distinctive parts:  

1.  The 

anterior pituitary

 

(adenohypophysis) is a 

classical gland composed 

predominantly of cells that secrete protein 

hormones. 

2.  The 

posterior pituitary

 (neurohypophysis) is not 

really an organ, but an extension of the 

hypothalamus. It is composed largely of the axons 

of hypothalamic neurons which extend downward 

as a large bundle behind the anterior pituitary.  

The target cells for most of the hormones produced in 

these tissues are themselves endocrine cells.  

The pituitary gland is often called the "master gland" 

of the body. The anterior and posterior pituitary secretes 

a number of hormones that collectively influence all cells 

and affect virtually all physiologic processes.  

 


background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

11

 

Table: The major hormones synthesized and secreted by the pituitary gland, along 

with summary statements about their major target organs and physiologic effects. 

 

Hormone 

Major target 

organ(s) 

Major Physiologic Effects 

Ant

e

rior

 

P

ituitary

 

Growth hormone 

Liver, adipose 
tissue 

Promotes growth (indirectly), 
control of protein, lipid and 
carbohydrate metabolism 

Thyroid-stimulating h. 

Thyroid gland 

Stimulates secretion of thyroid 
hormones 

Adrenocorticotropic h.  Adrenal gland 

(cortex) 

Stimulates secretion of 
glucocorticoids 

Prolactin 

Mammary gland 

Milk production 

Luteinizing hormone 

Ovary and testis 

Control of reproductive function 

Follicle-stimulating h. 

Ovary and testis 

Control of reproductive function 

P

oste

rior

 

P

ituitary

 

Antidiuretic hormone 

Kidney 

Conservation of body water 

Oxytocin 

Ovary and testis 

Stimulates milk ejection and uterine 
contractions 

As seen in the table above, the anterior pituitary synthesizes and secreted six  major 

hormones. Individual cells within the anterior pituitary secrete a single hormone (or 

possibly two in some cases). Thus, the anterior pituitary contains at least six distinctive 

endocrinocytes 

The cells that secrete thyroid-stimulating hormone do not also secrete growth hormone, 

and they have receptors for thyroid-releasing hormone, not growth hormone-releasing 

hormone.  

Hormonal cascade of signals from CNS to ultimate hormone. 
 
The target "gland" is the last hormone-producing tissue in the cascade, which is stimulated 

by an appropriate anterior pituitary hormone. Examples are thyroid gland, adrenal cortex, 

ovary and testes. Ultimate hormone feedback negatively on sites producing intermediate 

hormones in the cascade. Amounts (nanogram (ng), microgram (µg), and milligram (mg) 

represent approximate quantities of hormone released 

 

 

 


background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

11

 

Overview of anterior pituitary hormones with hypothalamic releasing 

hormones and their actions 

Anterior Pituitary Hormones 

1.  Growth Hormone 

Growth hormone, also known as somatotropin, is a 

protein hormone of about 191 amino acids and two 

intramoleculare disulfide bridges. that is synthesized and 

secreted by cells called somatotrophs in the anterior 

pituitary.  

During daytime, its plasma concentration in health adult 

remain relatively low (<2 g/ml) with several secoratory 

spikes occurring after meals or exercise.  

However it  shows a marked rise in the evening in both 

adults and children and reach a peak value during the 

period of deepest sleeps. 

It is a major participant in control of several complex physiologic processes, including 

growth and metabolism. Growth hormone is also of considerable interest as a drug used in 

both humans and animals.  

Physiologic Effects of Growth Hormone 

A critical concept in understanding growth hormone activity is that it has two distinct types 

of effects:  

 

Direct effects

 are the result of growth hormone binding its receptor on target cells. 

Fat cells (adipocytes), for example, have growth hormone receptors, and growth 

hormone stimulates them to break down triglyceride and suppresses their ability to 

take up and accumulate circulating lipids. 

Indirect effects

 are mediated primarily by a insulin-like growth factor-1 (IGF-1), a 

hormone that is secreted from the liver and other tissues in response to growth hormone. 

A majority of the growth promoting effects of growth hormone is actually due to IGF-1 

acting on its target cells. IGF-1 also appears to be the key player in muscle growth. It 

stimulates amino acid uptake and protein synthesis in muscle and other tissues.  

Metabolic Effects

  

 

Protein metabolism: In general, growth hormone stimulates protein anabolism in 

many tissues. This effect reflects increased amino acid uptake, increased protein 

synthesis and decreased oxidation of proteins. 


background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

12

 

 

Fat metabolism: Growth hormone enhances the utilization of fat by stimulating 

triglyceride breakdown and oxidation in adipocytes. 

 

Carbohydrate metabolism: Growth hormone is one of a battery of hormones that 

serves to maintain blood glucose within a normal range. Growth hormone is often 

said to have anti-insulin activity, because it suppresses the abilities of insulin to 

stimulate uptake of glucose in peripheral tissues and enhance glucose synthesis in 

the liver. 

 

Mineral metabolism: promotes a positive calcium, magnesium and phosphate 

balance and causes the retention of Na

+

, K

+

 and Cl

-

.  

Control of Growth Hormone Secretion 

Production of growth hormone is modulated by many 

factors, including stress, exercise, nutrition, sleep and 

growth hormone itself. However, its primary controllers 

are two hypothalamic hormones and one hormone from 

the stomach:  

 

Growth hormone-releasing hormone (GHRH) 

is a hypothalamic peptide that stimulates both 

the synthesis and secretion of growth hormone. 

 

Somatostatin (SS) is a peptide produced by 

several tissues in the body, including the 

hypothalamus. Somatostatin inhibits growth 

hormone release in response to GHRH and to 

other stimulatory factors such as low blood glucose concentration. 

 

Ghrelin is a peptide hormone secreted from the stomach. Ghrelin binds to 

receptors on somatotrophs and potently stimulates secretion of growth hormone.  

Growth hormone secretion is also part of a negative feedback loop involving IGF-1. 

High blood levels of IGF-1 lead to decreased secretion of growth hormone not only by 

directly suppressing the somatotroph, but by stimulating release of somatostatin from the 

hypothalamus.  

Growth hormone also feeds back to inhibit GHRH secretion and probably has a direct 

(autocrine) inhibitory effect on secretion from the somatotroph.  

Integration of all the factors that affect growth hormone synthesis and secretion lead to a 

pulsatile pattern of release. In children and young adults, the most intense period of growth 

hormone release is shortly after the onset of deep sleep.  


background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

13

 

Disease States 

A deficiency state can result not only from a deficiency in production of the hormone, but in 

the target cell's response to the hormone.  

Clinically, deficiency in growth hormone or receptor defects are known as growth 

retardation or dwarfism. The manifestation of growth hormone deficiency depends upon 

the age of onset of the disorder and can result from either heritable or acquired disease.  

The effect of excessive secretion of growth hormone is also very dependent on the age of 

onset and is seen as two distinctive disorders:  

 

Gigantism is the result of excessive growth hormone secretion that begins in young 

children or adolescents. It is a very rare disorder, usually resulting from a tumor of 

somatotropes.  

 

Acromegaly results from excessive secretion of growth hormone in adults.  The excessive 

growth hormone and IGF-1 also lead to metabolic derangements, including glucose 

intolerance.  

 

Quick quiz:  Which of the following does not influence GH production? 

1.  Diet 

2.  Stress 

3.  Sleep 

4.  exercise 

 

2.  Thyroid Stimulating Hormone 

Thyroid-stimulating hormone, also known as 

thyrotropin, is secreted from cells in the 

anterior pituitary called thyrotrophs, finds its 

receptors on epithelial cells in the thyroid 

gland, and stimulates that gland to 

synthesize and release thyroid hormones.  

TSH is a glycoprotein hormone composed of two subunits, which are 

non-covalently bound to one another. The alpha subunit of TSH is 

also present in two other pituitary glycoprotein hormones, follicle-

stimulating hormone and luteinizing hormone. In other words, TSH is 

composed of alpha subunit bound to the TSH beta subunit, and TSH 

associates only with its own receptor. Free alpha and beta subunits 

have essentially no biological activity. 


background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

14

 

TSH has several acute effects on thyroid function. These occur in minutes and involve 

increases of all phases of T

3

 and T

4

 biosynthesis. TSH also has several chronic effects on 

the thyroid. These require several days and include increases in the synthesis of proteins, 

phospholipids, and nucleic acids and in the size of number of thyroid cells. 

The most important controller of TSH secretion is thyroid-releasing hormone.  

Secretion of thyroid-releasing hormone, and hence, TSH, is inhibited by high blood 

levels of thyroid hormones in a classical negative feedback loop.  

 

Quick quiz:  All statements regarding TSH are true except: 

1.  It is not involved in protein and phospholipids synthesis 

2.  It provides NADPH by stimulating HMP pathway 

3.  It increases proteolysis of TBG to release T3 and T4 

4.  It increases uptake of iodine 

 

 

3.  Adrenocorticotropic Hormone  

Adrenocorticotropic hormone, stimulates the adrenal cortex by enhancing the 

conversion of cholesterol to pregnenolone. More specifically, it stimulates secretion 

of glucocorticoids such as cortisol, and has little control over secretion of aldosterone, 

the other major steroid hormone from the adrenal cortex. Another name for ACTH is 

corticotropin.  

ACTH is secreted from the anterior pituitary in response to corticotropin-releasing 

hormone from the hypothalamus. Corticotropin-releasing hormone 

is secreted in response to many types of stress, which makes sense 

in view of the "stress management" functions of glucocorticoids. 

Corticotropin-releasing hormone itself is inhibited by 

glucocorticoids, making it part of a classical negative feedback 

loop.  

Within the pituitary gland, ACTH is produced in a process that 

also generates several other hormones. A large precursor protein 

named proopiomelanocortin (POMC) is synthesized and 

proteolytically chopped into several fragments as depicted below.  

 

 


background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

15

 

 

 

 

 

 

 

The major attributes of the hormones other than ACTH that are produced in this process 

are summarized as follows:  

 

Lipotropin: Originally described as having weak lipolytic effects, its major 

importance is as the precursor to beta-endorphin. 

 

Beta-endorphin and Met-enkephalin: Opioid peptides with pain-alleviation and 

euphoric effects. 

 

Melanocyte-stimulating hormone (MSH): Known to control melanin pigmentation 

in the skin of most vertebrates. 

 

Quick quiz:  All the statements regarding ACTH are true except: 

1.  It is a tropic hormone with 39 amino acids 

2.  It decreases insulin release 

3.  It promotes growth of the adrenal cortex 

4.  In increases pigmentation of the skin 

 

 

 

  

 


background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

16

 

4.  Prolactin (PRL)  

Prolactin is a single-chain protein hormone closely related to growth hormone. It is 

secreted by so-called lactotrophs in the anterior pituitary. It is also synthesized and 

secreted by a broad range of other cells in the body.  

Prolactin contains 199 amino acids and has three intramoleculare disulfide brides.  

PRL has effects on the immune system and is important in the control of osmolality ad 

various events including: 

a.  Metabolism of subcataiuos fat 

b.  Carbohydrate metabolism 

c.  Calcium and Vit D metabolism 

d.  Fetal lung development 

e.  Steroidogenesis 

 

PRL binds to its receptor on the cell membrane 

of its target organs (breast, adrenal, ovaries, 

testes, prostate, kidney ad liver) but with 

unknown intracellular mechanism. 

Control of Prolactin Secretion 

In contrast to what is seen with all the other 

pituitary hormones, the hypothalamus 

suppresses prolactin secretion from the 

pituitary.  

Dopamine serves as the major prolactin-

inhibiting factor or brake on prolactin secretion. In addition to inhibition by dopamine, 

prolactin secretion is positively regulated by several hormones, including thyroid-releasing 

hormone, gonadotropin-releasing hormone and vasoactive intestinal polypeptide.  

Estrogens provide a well-studied positive control over prolactin synthesis and 

secretion

Quick quiz:  Secondary causes of hyperprolactinemia are: 

1.  Hypoglycemia 

2.  Hypothyroidism 

3.  Pituitary tumors 

4.  All the above 

 


background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

17

 

5. Gonadotropins: Luteinizing and Follicle Stimulating Hormones 

Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are called 

gonadotropins because stimulate the gonads - in males, the testes, and in females, 

the ovaries. As described for thyroid-simulating hormone, LH and FSH are large 

glycoproteins composed of alpha and beta subunits. The alpha subunit is identical in all 

three of these anterior pituitary hormones, while the beta subunit is unique for each 

hormone with the ability to bind its own receptor.  

a. 

Luteinizing Hormone

 

In both sexes, LH stimulates secretion of sex steroids from the gonads. In the testes, 

it stimulates the synthesis and secretion of testosterone. The 

ovary respond to LH stimulation by secretion of 

testosterone, which is converted into estrogen by adjacent 

granulosa cells.  

LH is required for continued development and function of 

corpora lutea. The name luteinizing hormone derives from 

this effect of inducing luteinization of ovarian follicles. 

b. 

Follicle-Stimulating Hormone

 

FSH stimulates the maturation of ovarian follicles. FSH is 

also critical for sperm production. It supports the function 

of Sertoli cells, which in turn support many aspects of sperm cell maturation.  

Control of Gonadotropin Secretion 

The principle regulator of LH and FSH secretion is gonadotropin-releasing hormone 

or GnRH . In a classical negative feedback loop, sex steroids inhibit secretion of GnRH 

and also appear to have direct negative effects on gonadotrophs.  

This regulatory loop leads to pulsatile secretion of LH and, to a much lesser extent, FSH. 

Numerous hormones influence GnRH secretion, and positive and negative control over 

GnRH and gonadotropin secretion is actually considerably more complex than described 

in the figure. For example, the gonads secrete at least two additional hormones - inhibin 

and activin , which selectively inhibit and activate FSH secretion from the pituitary.  

Quick quiz  The following hormones have structural homology except: 

1.  TSH 

2.  LH and FSH 

3.  PRL 

4.  HCG 


background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

18

 

Posterior Pituitary Hormones 

1.  Antidiuretic Hormone (Arginine Vasopressin)  

Roughly, 60% of the mass of the body is water, and despite wide 

variation in the amount of water taken in each day, body water 

content remains incredibly stable. Such precise control of body 

water and solute concentrations is a function of several hormones 

acting on both the kidneys and vascular system, but there is no doubt 

that antidiuretic hormone is a key player in this process.  

Antidiuretic hormone, also known as vasopressin, is a nine 

amino acid peptide secreted from the posterior pituitary. The 

single most important effect of antidiuretic hormone is to conserve body water by reducing 

the output of urine 

 

Effects of Antidiuretic Hormone 

1. 

stimulates contraction of the muscles of the capillaries and arterioles, raising 

blood pressure 

2. 

promotes contraction of the intestinal musculature , increasing peristalsis 

3. 

stimulates water reabsorbtion by stimulating insertion of "water channels" or 

aquaporins into the membranes of kidney tubules. These channels transport 

solute-free water through tubular cells and back into blood, leading to a 

decrease in plasma osmolarity and an increase osmolarity of urine.  

 

Control of Antidiuretic Hormone Secretion 

1.  The most important variable regulating 

antidiuretic hormone secretion is plasma 

osmolarity, or the concentration of solutes in 

blood. When plasma osmolarity is below a 

certain threshold, the osmoreceptors are not 

activated and antidiuretic hormone secretion is 

suppressed. When osmolarity increases above 

the threshold, the ever-alert osmoreceptors 

recognize this and stimulate the neurons that 

secrete antidiuretic hormone. As seen the figure, antidiuretic hormone 

concentrations rise steeply and linearly with increasing plasma osmolarity.  


background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

19

 

2.  Secretion of antidiuretic hormone is also simulated by decreases in blood 

pressure and volume, conditions sensed by stretch receptors in the heart and 

large arteries. Changes in blood pressure and volume are not nearly as sensitive a 

stimulator as increased osmolarity, but are nonetheless potent in severe conditions. 

For example, Loss of 15 or 20% of blood volume by hemorrhage results in massive 

secretion of antidiuretic hormone.  

Another potent stimulus of antidiuretic hormone is nausea and vomiting. 

 

Disease States 

The most common disease of man and animals related to antidiuretic hormone is diabetes 

insipidus. This condition can arise from either of two situations:  

 

Hypothalamic ("central") diabetes insipidus

 results from a deficiency in 

secretion of antidiuretic hormone from the posterior pituitary. Causes of this disease 

include head trauma, and infections or tumors involving the hypothalamus. 

 

Nephrogenic diabetes insipidus

 occurs when the kidney is unable to respond to 

antidiuretic hormone. Most commonly, this results from some type of renal disease, 

but mutations in the ADH receptor gene or in the gene encoding aquaporin-2 have 

also been demonstrated in affected humans.  

The major sign of either type of diabetes insipidus is excessive urine production. 

Some human patients produce as much as 16 liters of urine per day! If adequate water is 

available for consumption, the disease is rarely life-threatening, but withholding water can 

be very dangerous.  

 

Quick quiz:  Increased reabsorption of water from the kidney is the major consequence o 

which of the following hormones? 

1.  cortisol 

2.  insulin 

3.  vasopressin 

4.  glucagons 

Quick quiz  syndrome of inappropriate secretion of ADH (SIADH) is caused by: 

1.  malignant disease of lung/prostate 

2.  chest disease like pneumonia and TB 

3.  brain tumors and meningitis 

4.  all the above 


background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

21

 

2.  Oxytocin  

Oxytocin in a nine amino acid peptide that is synthesized in hypothalamic neurons and 

transported down axons of the posterior pituitary for secretion into 

blood. Oxytocin differs from antidiuretic hormone in two of the nine 

amino acids. Both hormones are packaged into granules and 

secreted along with carrier proteins called neurophysins.  

 

Control of Oxytocin Secretion 

A number of factors can inhibit oxytocin release, among them acute 

stress. For example, oxytocin neurons are repressed by 

catecholamines, which are released from the adrenal gland in response to many types of 

stress, including fright. 

 

Quick quiz  true or false 

Oxytocin stimulates synthesis of steroids in ovary 

 

Conclusion 

1.  The pituitary gland, a roundish organ that lies immediately beneath the hypothalamus 

composed of two distinctive parts:  

a.  The anterior pituitary (adenohypophysis). 

b.  The posterior pituitary (neurohypophysis) 

2.  knowledge of hormone structure and the ability to synthesize specific hormones 

permits the diagnosis of the disease states 

 

 

 

 

 

 

 

 

 

 

 


background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

21

 

Clinical correlation 

 

Testing Activity of the Anterior Pituitary 

 

Releasing hormones and chemical analogs, particularly of the smaller peptides, are now 

routinely synthesized. The gonadotropin-releasing hormone, a decapeptide, is available for 

use in assessing the function of the anterior pituitary. This is of importance when a disease 

situation may involve either the hypothalamus, the anterior pituitary, or the end organ. 

Infertility is an example of such a situation. What needs to be assessed in which organ is 

at fault in the hormonal cascade. Initially, the end organ, in this case the gonads, must be 

considered. This can be accomplished by injecting the anterior pituitary hormone LH or 

FSH. If sex hormone secretion is elicited, then the ultimate gland would appear to be 

functioning properly. Next, the anterior pituitary would need to be analyzed. This can be 

done by i.v. administration of synthetic GnRH; by this route, GnRH can gain access to the 

gonadotropic  cells of the anterior pituitary and elicit secretion of LH and FSH. Routinely, 

LH levels are measured in the blood as a function of time after the injection.  These levels  

are measured by radioimmunoassay (RIA) in which radioactive LH or hCG is displaced 

from binding to an LH-binding protein by LH in the serum sample. The extent of the 

competition is proportional to the amount of LH in the serum. In this way a progress of 

response is measured that will be within normal limits or clearly deficient. If the response is 

deficient, the anterior pituitary cells are not functioning normally and are the cause of the 

syndrome. On the other hand, normal pituitary response to GnRH would indicate that the 

hypothalamus was non-functional. Such a finding would prompt examination of the 

hypothalamus  for conditions leading to insufficient  availability/production of releasing 

hormones. Obviously, the knowledge of hormone structure and the ability to synthesize 

specific hormones permits the diagnosis of these disease states. 

 

Source: Marshall, J. C. and Barkan, A. L., "Disorders of the hypothalamus and anterior 

pituitary. In: W. N. Kelley (Ed.), Internal Medicine." New York: Lippincott, 1989, p. 2759. 

Conn, P. M. "The molecular basis of gonadotropin-releasing hormone action". Endocr. 

Rev. 7:3, 1986. 

 

 

 


background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

22

 

 

Clinical correlation 

 

Hypopituitarism 

 

The hypothalamus is connected to the anterior pituitary by a delicate stalk that contains 

the portal system through which releasing hormones, secreted from the hypothalamus, 

gain access to the anterior pituitary cells. In the cell membranes of these cells are specific 

receptors for releasing hormones. In most cases, different cells express deferent releasing 

hormone receptors. The connection between the hypothalamus and anterior pituitary can 

be disrupted by trauma or tumors. Trauma can occur in automobile accidents or other local 

damaging events that may result in severing of the stalk, thus preventing the releasing 

hormones from reaching their target anterior pituitary cells. When this happens, the 

anterior pituitary cells no longer have their signaling mechanism for the release of anterior 

pituitary hormones. In the case of tumors of  the pituitary gland, all of the anterior pituitary 

hormones may not be shut off to the same degree or the secretion of some may disappear 

sooner than others. 

 

In any case, if the hypopituitarism occurs, this condition may result in a life-threatening 

situation in which the clinician must determine the extent of loss of pituitary hormones, 

especially ACTH. Posterior pituitary hormones (Oxytocin and vasopressin) may also be 

lost, precipitating a problem of excessive urination (vasopressin deficiency) that must be 

addressed. The usual therapy involves administration of the end-organ hormones, such 

as, thyroid hormone, cortisol, sex hormones, and progestin; with female patients it is also 

necessary to maintain the ovarian cycle. These hormones can be easily administered in 

the oral form. Growth hormone deficiency is not a problem in the adult but would be an 

important problem in a growing child. 

The patient must learn to anticipate needed increases of cortisol in the face of stressful 

situations. Fortunately, these patients are usually maintained in reasonably good condition. 

 

Source: Marshall, J. C. and Barkan, A. L., "Disorders of the hypothalamus and anterior 

pituitary. In: W. N. Kelley (Ed.), Internal Medicine." New York: Lippincott, 1989, p. 

2159.Robinson,A.G."Disorders of the posterior pituitary". In: W. N. Kelley(Ed.), Internal 

Medicine. New York: 


background image

Professor Dr. H.D.El-Yassin 2013

 

 
 

23

 

 

Question : Hypopituitarism may result from trauma, such as an automobile accident 

severing the stalk connecting the hypothalamus and anterior pituitary, or from tumors of 

the pituitary gland. In trauma, usually all of the releasing hormones from hypothalamus fail 

to reach the anterior pituitary. With a tumor of the gland, some or all of the pituitary 

hormones may be shut off. Posterior pituitary hormones may also be lost. Hypopituitarism 

can be life threatening. Usual therapy is administration of end-organ hormones in oral 

form. 

 

1)  If the stalk between the hypothalamus and anterior pituitary is severed, the pituitary 

would fail to cause the ultimate release of all of the following hormones except : 

a)  ACTH. 

b)  estradiol. 

c)  oxytocin. 

d)  testosterone. 

e)  thyroxine. 

 

 

Answers: 

 

1)  C  Oxytocin is released from posterior pituitary. A, B, D, and E all require releasing 

hormones from hypothalamus for anterior pituitary to release them. 

 




رفعت المحاضرة من قبل: Abdalmalik Abdullateef
المشاهدات: لقد قام 10 أعضاء و 195 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل