background image

201

FORMATION OF THE LUNG BUDS

When the embryo is approximately 4 weeks old, 
the  respiratory diverticulum (lung bud) 
appears as an outgrowth from the ventral wall 
of the foregut (Fig. 14.1A). The appearance and 
location of the lung bud are dependent upon an 
increase in retinoic acid (RA) produced by 
adjacent mesoderm. This increase in RA causes 
upregulation of the transcription factor TBX4 
expressed in the endoderm of the gut tube at 
the site of the respiratory diverticulum. TBX4 
induces formation of the bud and the continued 
growth and differentiation of the lungs. Hence, 
epithelium

 of the internal lining of the lar-

ynx, trachea, and bronchi, as well as that of the 
lungs, is entirely of endodermal origin. The 

cartilaginous, muscular

, and connective tis-

sue

 components of the trachea and lungs are 

derived from splanchnic mesoderm surround-
ing the foregut.

Initially, the lung bud is in open commu-

nication with the foregut (Fig. 14.1B). When 
the diverticulum expands caudally, however, 
two longitudinal ridges, the tracheoesoph-
ageal ridges

, separate it from the foregut 

(Fig. 14.2A). Subsequently, when these ridges 
fuse to form the tracheoesophageal septum
the foregut is divided into a dorsal portion, the 
esophagus

, and a ventral portion, the trachea 

and lung buds (Fig. 14.2B,C). The  respiratory 
primordium maintains its communication with 
the pharynx through the laryngeal orifi ce 
(Fig. 14.2D).

Chapter 

14

Respiratory System

Openings of

pharyngeal pouches

Laryngotracheal

orifice

Respiratory

diverticulum

Respiratory

diverticulum

Heart

Vitelline

duct

Allantois

Cloacal

membrane

A

B

Attachment of

buccopharyngeal

membrane

Hindgut

Liver bud

Duodenum

Midgut

Stomach

Figure 14.1 

A. Embryo of approximately 25 days’ gestation showing the relation of the respiratory diverticulum to the 

heart, stomach, and liver. B. Sagittal section through the cephalic end of a 5-week embryo showing the openings of the 
pharyngeal pouches and the laryngotracheal orifi ce.

Sadler_Chap14.indd   201

Sadler_Chap14.indd   201

8/26/2011   4:17:37 AM

8/26/2011   4:17:37 AM


background image

Lateral lingual swelling

Respiratory 

diverticulum

Foramen 

cecum

Tuberculum impar

Lung

buds

Trachea

Esophagus

Tracheoesophageal

ridge

Foregut

Epiglottal

swelling

Laryngeal 

orifice

I

I

II

II

IV

A

C

B

VI

Laryngeal

swellings

D

A

E

B

D

C

Trachea

Bifurcation

Bronchi

Tracheoesophageal

fistula

Distal part of

esophagus

Proximal blind-

end part of

esophagus

Communication

of esophagus

with trachea

Sadler_Chap14.indd   202

Sadler_Chap14.indd   202

8/26/2011   4:17:37 AM

8/26/2011   4:17:37 AM


background image

Lingual swelling

Body of tongue

Foramen

cecum

Epiglottis

Epiglottal

swelling

Arytenoid swellings

Laryngeal

orifice

l

ll

lll

lV

Vl

B

A

Sadler_Chap14.indd   203

Sadler_Chap14.indd   203

8/26/2011   4:17:40 AM

8/26/2011   4:17:40 AM


background image

204

   

Part II    Systems-Based Embryology

between the parietal and visceral pleura is the 
pleural cavity

 (Fig. 14.7).

During further development, secondary 

bronchi divide repeatedly in a dichotomous 
fashion, forming 10 tertiary (segmental) 
bronchi in the right lung and 8 in the left, cre-
ating the bronchopulmonary segments of 
the adult lung. By the end of the sixth month, 
approximately 17 generations of subdivisions 
have formed. Before the bronchial tree reaches 
its fi nal shape, however, an additional six divi-
sions form during postnatal life

. Branching 

is regulated by epithelial-mesenchymal inter-
actions between the endoderm of the lung 
buds and splanchnic mesoderm that surrounds 
them. Signals for branching, which emit from 
the mesoderm, involve members of the fi bro-
blast growth factor family. While all of these 
new subdivisions are occurring and the bron-
chial tree is developing, the lungs assume a more 
caudal position, so that by the time of birth, the 

Lung
buds

Left bronchus

Right upper lobe

Left upper

lobe

Left
lower
lobe

Right

middle lobe

Right lower lobe

A

B

C

Trachea

Figure 14.5 

Stages in development of the trachea and lungs. A. 5 weeks. B. 6 weeks. C. 8 weeks.

Lung bud

Pleuro-
pericardial
fold

Phrenic
nerve

Common
cardinal
vein

Heart

B

Pharynx

Trachea

Parietal

pleura

Visceral

pleura

Lung bud

Pericardioperitoneal

canal

Visceral peritoneum

A

Figure 14.6 

Expansion of the lung buds into the pericardioperitoneal canals. At this stage, the canals are in communication 

with the peritoneal and pericardial cavities. A. Ventral view of lung buds. B. Transverse section through the lung buds showing 
the pleuropericardial folds that will divide the thoracic portion of the body cavity into the pleural and pericardial cavities.

Trachea

Bronchus Visceral

pleura

Pleural cavity

Parietal pleura

Figure 14.7 

Once the pericardioperitoneal canals sepa-

rate from the pericardial and peritoneal cavities, respec-
tively, the lungs expand in the pleural cavities. Note the 
visceral and parietal pleura and defi nitive pleural cavity. The 
visceral pleura extends between the lobes of the lungs.

Sadler_Chap14.indd   204

Sadler_Chap14.indd   204

8/26/2011   4:17:41 AM

8/26/2011   4:17:41 AM


background image

 

Chapter 14    Respiratory System   

205

Respiratory

bronchiole

Lung

epithelium

Blood

capillaries

Thin

squamous
epithelium

Terminal

sacs

Flat endothelium

cell of blood

capillary

Respiratory

bronchiole

Terminal

bronchiole

A

B

Figure 14.8 

Histological and functional development of the lung. A. The canalicular period lasts from the 16th to the 

26th week. Note the cuboidal cells lining the respiratory bronchioli. B. The terminal sac period begins at the end of the 
sixth and beginning of the seventh prenatal month. Cuboidal cells become very thin and intimately associated with the 
endothelium of blood and lymph capillaries or form terminal sacs (primitive alveoli).

bifurcation of the trachea is opposite the fourth 
thoracic vertebra.

MATURATION OF THE LUNGS

Up to the seventh prenatal month, the bronchi-
oles divide continuously into more and smaller 
canals (canalicular phase) and the vascular sup-
ply increases steadily (Fig. 14.8A).  Terminal 
bronchioles

 divide to form respiratory bron-

chioles

 and each of these divides into three to 

six alveolar ducts (Fig. 14.8B). The ducts end in 
terminal sacs (primitive alveoli)

 that are sur-

rounded by fl at alveolar cells in close contact with 
neighboring capillaries (Fig. 14.8B). By the end of 
the seventh month, suffi cient numbers of mature 
alveolar sacs and capillaries are present to guar-
antee adequate gas exchange, and the premature 
infant is able to survive (Fig. 14.9) (Table 14.1).

During the last 2 months of prenatal life and 

for several years thereafter, the number of termi-
nal sacs increases steadily. In addition, cells lining 
the sacs, known as type I alveolar epithe-
lial cells

, become thinner, so that surrounding 

capillaries protrude into the alveolar sacs 
(Fig. 14.9). This intimate contact between 
epithelial and endothelial cells makes up the 
blood–air barrier. Mature alveoli

 are not 

present before birth. In addition to endothelial 
cells and fl at alveolar epithelial cells, another cell 
type develops at the end of the sixth month. 
These cells, type II alveolar epithelial cells
produce  surfactant, a phospholipid-rich fl uid 
capable of lowering surface tension at the air–
alveolar interface.

Before birth, the lungs are full of fl uid  that 

contains a high chloride concentration, little 
protein, some mucus from the bronchial glands, 

TABLE 14.1 

Maturation of the Lungs

Pseudoglandular period

5–16 wk

Branching has continued to form 
terminal bronchioles. No respiratory 
bronchioles or alveoli are present.

Canalicular period

16–26 wk

Each terminal bronchiole divides into 
two or more respiratory bronchioles, 
which in turn divide into three to six 
alveolar ducts.

Terminal sac period

26 wk to birth

Terminal sacs (primitive alveoli) form, 
and capillaries establish close contact.

Alveolar period

8 mo to childhood

Mature alveoli have well-developed 
epithelial endothelial (capillary) 
contacts.

Sadler_Chap14.indd   205

Sadler_Chap14.indd   205

8/26/2011   4:17:42 AM

8/26/2011   4:17:42 AM


background image

Thin squamous

epithelium

Blood

capillary

Lymph

capillary

Mature alveolus

Alveolar

duct

Respiratory bronchiole

Sadler_Chap14.indd   206

Sadler_Chap14.indd   206

8/26/2011   4:17:43 AM

8/26/2011   4:17:43 AM


background image

 

Chapter 14    Respiratory System   

207

Respiratory movements after birth bring air 

into the lungs, which expand and fi ll the pleural 
cavity. Although the alveoli increase somewhat in 
size, growth of the lungs after birth is due pri-
marily to an increase in the number of respira-
tory bronchioles and alveoli. It is estimated that 
only one-sixth of the adult number of alveoli 
are present at birth. The remaining alveoli are 
formed during the fi rst 10 years of postnatal life 
through the continuous formation of new primi-
tive alveoli.

Summary

The respiratory system

 is an outgrowth of the 

ventral wall of the foregut, and the epithelium 
of the larynx, trachea, bronchi, and alveoli origi-
nates in the endoderm. The cartilaginous, mus-
cular, and connective tissue components arise in 
the mesoderm. In the fourth week of develop-
ment, the tracheoesophageal septum separates 
the trachea from the foregut, dividing the foregut 
into the lung bud anteriorly and the esophagus 
posteriorly. Contact between the two is main-
tained through the larynx, which is formed by 
tissue of the fourth and sixth pharyngeal arches. 
The lung bud develops into two main bronchi: 
the right forms three secondary bronchi and 
three lobes; the left forms two secondary bronchi 
and two lobes. Faulty partitioning of the foregut 
by the tracheoesophageal septum causes esopha-
geal atresias and TEFs (Fig. 14.3).

After a pseudoglandular (5 to 16 weeks) and 

canalicular (16 to 26 weeks) phase, cells of the 
cuboidal-lined respiratory bronchioles change 

into thin, fl at  cells,  type I alveolar epithelial 
cells

, intimately associated with blood and lymph 

capillaries. In the seventh month, gas exchange 
between the blood and air in the primitive 
alveoli

 is possible. Before birth, the lungs are 

fi lled with fl uid with little protein, some mucus, 
and  surfactant, which is produced by type II 
alveolar epithelial cells

 and which forms a 

phospholipid coat on the alveolar membranes. 
At the beginning of respiration, the lung fl uid 
is resorbed except for the surfactant coat, which 
prevents the collapse of the alveoli during expi-
ration by reducing the surface tension at the air–
blood capillary interface. Absent or insuffi cient 
surfactant in the premature baby causes respi-
ratory distress syndrome (RDS)

 because of 

collapse of the primitive alveoli (hyaline mem-
brane disease)

.

Growth of the lungs after birth is primarily 

due to an increase in the number of respiratory 
bronchioles and alveoli and not to an increase in 
the  size of the alveoli. New alveoli are formed 
during the fi rst 10 years of postnatal life.

Problems to Solve

1. 

A prenatal ultrasound revealed polyhydram-
nios, and at birth, the baby had excessive 
fl uids in its mouth. What type of birth defect 
might be present, and what is its embryologi-
cal origin? Would you examine the child 
carefully for other birth defects? Why?

2. 

A baby born at 6 months’ gestation is having 
trouble breathing. Why?

Sadler_Chap14.indd   207

Sadler_Chap14.indd   207

8/26/2011   4:17:45 AM

8/26/2011   4:17:45 AM




رفعت المحاضرة من قبل: ali anas
المشاهدات: لقد قام 8 أعضاء و 260 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل