مواضيع المحاضرة: مقدمة في علم الجيومورفلوجي
background image

Geomorphology

"

What is above knows what is 

below, but what is below does not 
know what is above. 
One climbs, one sees. One 
descends, one sees no longer, but 
one has seen."
"When one can no longer see, one 
can at least still know..." 

- Rene' Daumal, The Art of Climbing 

Mountains, from 'Mount Analogue' -


background image

Geomorphology

• 

Literally means the study of earth landforms

-

Geo = Earth

-

Morph=Form

-

Logos= Study of

• 

Involves understanding of

-

Mineralogy

-

Structure

-

Tectonics

-

Stratigraphy

-

Chemistry

-

Physics

-

Meteorology & Climatology


background image

Course Description

Analysis of the various land forms of the 
Earth's surface in terms of their form, 
origin, and evolution. Field observations. 
Mathematical and experimental models.

The influence of the different geologic and 
climatic environments upon the 
development of land forms. 

Map and air photo interpretation. 

Snowfall in the zone of accumulation


background image

Why Study 

Geomorphology?

Understand the present

Interpret the past


background image

Geomorphologic process

Exogentic source 

Tectonic , Volcanic

Endogentic source

Rivers, Glacier, Aeolian, Rain, Marine


background image

In your introductory geology class, you 
learned about surface features.

In this class, we try to understand how and why 

they have their shape 

Sea-stack, tides, tombolo, erosion by waves


background image

Agents of Change...

Glaciers

Rivers & Oceans

Wind

Gravity


background image

Tools of Geomorphology

Maps

– Topographic
– Surface Geologic

Air photos

Math Models

Experiments

Ground Truth

Example: pointbar and cutbank. mid-channel bar, incised meander


background image

Aerial and Satellite Photos

Fanabosi Tsunami Chevrons, Southern Madagascar


background image

Topics of Geomorphology

Agents or Factors

– “that which acts or has the power to act”
– Water and ice, wind

Subsurface Modifiers

– Tectonic compression, tension and shear

Processes

– “progressive steps by which an end is attained”
– Weathering, erosion, transport, deposition

Energy Sources

– Solar, geothermal, gravitational, chemical

Godfrey Ridge East and Brodhead Creek, DWG, PA, , detail


background image

Rise of Geomorphic Thought

Observation and hypothesis 

– Herodotus 450 BC

Description 

– Hutton – 1700’s+

Explanation 1800

’s

– Agassiz – glacial landforms
– Powell (1834 -1902) – fluvial/structure
– Gilbert (1843 -1918) – All surfaces

Correlation 

– Davis (1850 -1934) – fluvial+

Quantification and prediction 

now a common goal

Horn, cirque, col, rock slide, talus

Geomorphology History flashcards


background image

Herodotus (484 - 425 B.C.)

Rocks on land in Egypt contained

marine fossils.

Assumed that the 

Nile Delta took 

thousands of years

to form.


background image

Aristotle (384 - 322 B.C.)

Dry land can be submerged.

Land can be raised from beneath the 
ocean.

Described erosion by rivers, and 
deposition in deltas.


background image

Lucretius (99-55 BC): Recognized 
weathering processes on rocks.

Seneca (3-65 AD): Observed erosion of 
valleys by running water.

Ibn-Sina (980-1037 AD): Concluded that

mountains could be uplifted, and later 

eroded.


background image

Renaissance Period

Leonardo DaVinci (1452-1519) found 
marine fossils on land

G. Bauer [

“Agricola”] (1494-1555) 

hypothesized that mountains were 
sculpted by weathering and mass 
movements

Steno (1638-87) regarded water as the 
most significant agent of erosion

viscosity


background image

Landscape Creation vs.

Landscape Development

Biblical interpretations hindered the

proliferation of non-catastrophic landform

evolution theories.

Holly Quran:

 (:

 ُصُقنَن  َض ْرَلأا يِتْأَن اَّنَأ ْا ْوَرَي ْمَل َوَأ

 ْحَي ُ هللّا َو اَهِفاَرْطَأ ْنِم اَه

 ُمُك

 َ سِحْلا ُعي ِرَ س َوُه َو ِهِمْكُحِل  َبِهقَعُم َلا

 ِاب

{

41

}

( )

سورة الرعد

.)

Werner (1749-1817) theorized that all

mountains formed under water as layers of 

sediment, , and were ultimately sculpted 
by rapidly receding oceans.


background image

Catastrophic Theories

Georges Cuvier: Great catastrophic

floods produced unconformities, and 

carved Earth

’s landscape.


background image

James Hutton (1726-97)

Granites form through 
heat & fusion deep 
underground, and are 
later uplifted and 
exhumed.

Landforms are 
produced by slow, 
continuous 
processes.

Uniformatarianism


background image

Hutton (continued)

Sediments are eroded from 
landforms, only to be 
deposited and later lithified 
into new rocks.

There is neither an apparent 
beginning nor end to landform 
development.


background image

Hutton

’s Proponents

John Playfair (1748-1819)

– Illustrations of the Huttonian Theory of the Earth (1802).

– Streams carve their own drainage systems.
– Stream reaches and maintains equilibrium, adjusted to               

local gradient. CONCEPT OF 

“GRADED STREAM”

– The Earth is very ancient; ongoing processes

continue to change it.

Charles Lyell (1797 - 1875)

The Principles of Geology (1833 - 1875)

A strong promoter of Uniformitarian theory
A vehement opponent of Catastrophism


background image

Other Nineteenth Century

European Contributions

Venetz, and Bernardhi: Moraines and 
erratics prove glaciations extended from 
polal regions(1832)

Louis Agassiz : Recognized glacial 
landforms in Europe & N. Am.- introduced 
the concept of Ice Ages (1837)

http://books.google.com/books?id=d4er
qwFkgu4C&pg=PA8&lpg=PA8&dq=Bern
hardi+glacier&source=bl&ots=uDleT4N
Qiv&sig=OracgXNC5nHLD5FtVwA5Jqkv
WbY&hl=en&sa=X&oi=book_result&res
num=1&ct=result#PPA8,M1


background image

Grove Karl Gilbert 

(1890)  Recognized some Utah landscapes 
were formed by Pleistocene Lake Bonneville. 
Great Salt Lake and Bonneville salt flats are 
remnants

Contributed to the understanding of river 
incision.

Identified lunar craters as caused by impacts, 
and carried out early impact - cratering 
experiments  


background image

William Morris Davis 1850 -1934

• Davis' Cycle of  erosion

An example from an arid climate.

Davis' idea of a peneplain


background image

William Morris Davis

landscapes evolve throughout time, 

examining the characteristics of the landscape

implies that TIME is the critical factor in 
determining what the landscape looks like


background image

Davis' Landscape evolution model

(most 
notably 
identified for 
streams and 
mountains 
as in this 
example 
from an intro 
geology 
textbook)


background image

Our Goal

We wish to understand surface 
topography at a fundamental level.

We want to understand on a much finer 
scale.


background image

Concepts in Geomorphology

Systems

– “an assemblage of parts forming a whole”
– Fluvial, glacial, coastal, 
– foreland basin, collisional mountains

Climate

– Determines dominant agents

Time

– Reshaping = "Evolution" of landforms/landscapes

Systems can dominate large areas.

– Regions summarized as  Physiography Maps 


background image

Regional Physiography

Topography

Early geomorphologists recognized these provinces based on topography


background image

Regional Physiography

You should all be able to explain every province: Plate Tectonics, Earth History


background image

San Andreas Fault on the Carrizo Plain in California

Structure, climate and geomorphology


background image

What will our hill do if it rains?

Understanding 
geomorphic processes  
requires a little applied 
physics. For example, 
we will study 

mass 

wasting. 

Geomorphologists conduct 

experimental determinations of 
friction with rock and ice when 
considering slope failure and 
glaciers.

Chalkboard, resolve weight  mg into components parallel and opposite F

f

and N


background image

To keep the rock from sliding,

the static friction force F

must be greater 

than the opposing component of gravity 
force F

o,

that is parallel to the slope.

If the vertical makes an 

angle 

a

to the slope, then this friction 

opposing force F

o

is 

F

o

= mg cos 

a

This is the friction force just before the rock slips

If rain gets between the surfaces, or the rock moves friction force F

f

decreases

a

Notice 

a

is 90 - dip

• Chalkboard: right triangle, 
unit circle, sine and cosine

mg


background image

Future Labs

Earth scientists must be able to recognize 
and interpret surface features using topo 
maps and air  and satellite photos. Before 
you head to the field, you need to know 
what to expect. 

You must be able to recognize 
geomorphic features in map and side view 
from your prospective field area, before 
your field studies begin.

We will improve your skills with these tools 
in the laboratory portion of the course. 


background image

Homework for this class

For homework you will answer questions 
from the lectures and labs, and will do 
calculations and make observations based 
on lecture and lab topics.

Homework is practice for the tests




رفعت المحاضرة من قبل: Medoo Chan
المشاهدات: لقد قام 5 أعضاء و 150 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل