background image

1

 

 

 

 بسم هللا الرحمن الرحيم

 

Lecture -1-                                       Medical Physiology (GIT system) 

2

nd

 stage                                               Dr. Noor Jawad(2020) 

 

 

Gastrointestinal tract (Digestive system)

 

 

GENERAL PRINCIPLES OF GASTROINTESTINAL

 

     

Objectives of our lecture: 

1.  What is the physiological anatomy of the gastrointestinal wall? 
2.  What is the enteric nervous system? 
3.  Functional types of movements in GIT? 

The digestive system is a tube running from mouth to anus.It 

provides the body with a continual supply of water, electrolytes, 

vitamins, and nutrients, which requires:

 

 (1) movement of food through the alimentary tract;

 

 (2) secretion of digestive juices and digestion of the food;

 

 

 (3) absorption of water, various electrolytes, vitamins, and 

digestive products;

 

 (4) circulation of blood through the gastrointestinal organs to carry 

away the absorbed substances; and

 

 (5) control of all these functions by local, nervous, and hormonal 

systems. 

 


background image

2

 

 

PHYSIOLOGICAL ANATOMY OF THE 

GASTROINTESTINAL WALL

 

 Figure below shows a typical cross section of the intestinal wall, 

including the following layers from the outer surface inward: (1) 

the serosa, (2) a longitudinal smooth muscle layer, (3) a circular 

smooth muscle layer, (4) the submucosa, and (5) the mucosa. In 

addition, sparse bundles of smooth muscle fibers, the mucosal 

muscle, lie in the deeper layers of the mucosa. The motor functions 

of the gut are performed by the different layers of smooth muscle.

 

 

 

oss section of the intestinal wall

Figure  shows a typical cr

 


background image

3

 

 

NEURAL CONTROL OF GASTROINTESTINAL 

FUNCTION—ENTERIC NERVOUS SYSTEM 

 

The gastrointestinal tract has a nervous system all its own called 

the enteric nervous system. It lies entirely in the wall of the gut, 

beginning in the esophagus and extending all the way to the anus. 

The number of neurons in this enteric system is about 100 million, 

nearly equal to the number in the entire spinal cord. This highly 

developed enteric nervous system is especially important in 

controlling gastrointestinal movements and secretion. 

 

The enteric nervous system is composed mainly of two plexuses, 

shown in Figure below: (1) an outer plexus lying between the 

longitudinal and circular muscle layers, called the myenteric 

plexus or Auerbach’s plexus, and (2) an inner plexus, called the 

submucosal plexus or Meissner’s plexus, which lies in the 

submucosa. 

 

The myenteric plexus controls mainly the gastrointestinal 

movements, and the submucosal plexus controls mainly 

gastrointestinal secretion and local blood flow.. Although the 

enteric nervous system can function independently of these 

extrinsic nerves, stimulation by the parasympathetic and 

sympathetic systems can greatly enhance or inhibit gastrointestinal 

functions. 

 


background image

4

 

 

Also shown in Figure  below are sensory nerve endings that 

originate in the gastrointestinal epithelium or gut wall and send 

afferent fibers to both plexuses of the enteric system, as well as (1) 

to the prevertebral ganglia of the sympathetic nervous system, (2) 

to the spinal cord, and (3) in the vagus nerves all the way to the 

brain stem. These sensory nerves can elicit local reflexes within 

the gut wall itself and still other reflexes that are relayed to the gut 

from either the prevertebral ganglia or the basal regions of the 

brain.

 

 

 

 

(Figure show (Neural control of the gut wall), showing (1) the myenteric and 

submucosal plexuses (black fibers); (2) extrinsic control of these plexuses by the 

sympathetic and parasympathetic nervous systems (red fibers); and (3) sensory 

fibers passing from the luminal epithelium and gut wall to the enteric plexuses, then 

to the prevertebral ganglia of the spinal cord and directly to the spinal cord and 

brain stem)

 


background image

5

 

 

DIFFERENCES BETWEEN THE MYENTERIC AND 

SUBMUCOSAL PLEXUSES 

 

The myenteric plexus consists mostly of a linear chain of many 

interconnecting neurons that extends the entire length of the 

gastrointestinal tract. Because the myenteric plexus extends all the 

way along the intestinal wall and lies between the longitudinal and 

circular layers of intestinal smooth muscle, it is concerned mainly 

with controlling muscle activity along the length of the gut. 

 

 

(1)

When this plexus is stimulated, its principal effects are 

 

increased

 

(2)

increased tonic contraction, or “tone,” of the gut wall; 

slightly increased rate 

 

(3)

intensity of the rhythmical contractions; 

increased velocity of 

 

(4)

of the rhythm of contraction; and 

conduction of excitatory waves along the gut wall, causing more 

rapid movement of the gut peristaltic waves.

 

 The myenteric plexus should not be considered entirely excitatory 

because some of its neurons are inhibitory; their fiber endings 

secrete an inhibitory transmitter, possibly vasoactive intestinal 

polypeptide or some other inhibitory peptide. The resulting 

inhibitory signals are especially useful for inhibiting some of the 

intestinal sphincter muscles that impede movement of food along 

successive segments of the gastrointestinal tract, such as the 

pyloric sphincter, which controls emptying of the stomach into the 


background image

6

 

 

duodenum, and the sphincter of the ileocecal valve, which controls 

emptying from the small intestine into the cecum.

 

 The submucosal plexus, in contrast to the myenteric plexus, is 

mainly concerned with controlling function within the inner wall 

of each minute segment of the intestine. For instance, many 

sensory signals originate from the gastrointestinal epithelium and 

are then integrated in the submucosal plexus to help control local 

intestinal secretion, local absorption, and local contraction of the 

submucosal muscle that causes various degrees of infolding of the 

gastrointestinal mucosa.

 

TYPES OF NEUROTRANSMITTERS SECRETED BY 

ENTERIC NEURONS

 

Researchers  have identified a dozen or more different 

neurotransmitter substances that are released by the nerve endings 

of different types of enteric neurons, including: (1) acetylcholine, 

(2) norepinephrine, (3) adenosine triphosphate, (4) serotonin, (5) 

dopamine, (6) cholecystokinin, (7) substance P, (8) vasoactive 

intestinal polypeptide, (9) somatostatin, (10) leu-enkephalin, (11) 

met-enkephalin, and (12) bombesin.

 

Acetylcholine most often excites gastrointestinal activity. 

Norepinephrine almost always inhibits gastrointestinal activity, as 

does epinephrine, which reaches the gastrointestinal tract mainly 


background image

7

 

 

by way of the blood after it is secreted by the adrenal medullae into 

the circulation. 

 

FUNCTIONAL TYPES OF MOVEMENTS IN THE 

GASTROINTESTINAL TRACT

 

 Two types of movements occur in the gastrointestinal tract: (1) 

propulsive movements, which cause food to move forward along 

the tract at an appropriate rate to accommodate digestion and 

absorption, and (2) mixing movements, which keep the intestinal 

contents thoroughly mixed at all times.

 

 PROPULSIVE MOVEMENTS—PERISTALSIS 

 

A contractile ring appears around the gut and then moves forward; 

this mechanism is analogous to putting one’s fingers around a thin 

distended tube, then constricting the fingers and sliding them 

forward along the tube. Any material in front of the contractile ring 

is moved forward. Peristalsis is an inherent property of many 

syncytial smooth muscle tubes; stimulation at any point in the gut 

can cause a contractile ring to appear in the circular muscle, and 

this ring then spreads along the gut tube. (Peristalsis also occurs in 

the bile ducts, glandular ducts, ureters, and many other smooth 

muscle tubes of the body.) 

 

The usual stimulus for intestinal peristalsis is distention of the gut. 

That is, if a large amount of food collects at any point in the gut, 


background image

8

 

 

the stretching of the gut wall stimulates the enteric nervous system 

to contract the gut wall 2 to 3 centimeters behind this point, and a 

contractile ring appears that initiates a peristaltic movement. Other 

stimuli that can initiate peristalsis include chemical or physical 

irritation of the epithelial lining in the gut. Also, strong 

parasympathetic nervous signals to the gut will elicit strong 

peristalsis.

 

MIXING MOVEMENTS 

 

Mixing movements differ in different parts of the alimentary tract. 

In some areas, the peristaltic contractions cause most of the 

mixing. This is especially true when forward progression of the 

intestinal contents is blocked by a sphincter so that a peristaltic 

wave can then only churn the intestinal contents, rather than 

propelling them forward. At other times, local intermittent 

constrictive contractions occur every few centimeters in the gut 

wall. These constrictions usually last only 5 to 30 seconds; new 

constrictions then occur at other points in the gut, thus “chopping” 

and “shearing” the contents first here and then there. 

 

  

Thank you

 

References :   Guyton and Hall textbook of medical physiology, 

thirteen edition.

 




رفعت المحاضرة من قبل: Mubark Wilkins
المشاهدات: لقد قام 6 أعضاء و 172 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل