
אמ א
אמ א
אמ א
אמ א
:
!
" # $
:
% &'( ) *+ )!, -./0
–
.

5
!"#$
3
!"#$
................................
................................
...................
3
"# $ %& '(" )*
)
,
(
................................
.............
3
'(" ./
F(x, y)
.
4
'(" )*
................................
................................
........
5
./
'("
F(x, y)
"# .'( 0$ $
.
5
.1 23 "# 0$
5
45(" 6.1 7*
................................
................................
........
6
89
................................
................................
...................
7
% &'()*
................................
................................
.....
7
:;<= 08& >(;
................................
................................
..........
7
?$ 4@( 7 A1
................................
................................
...
9
B(" ?
................................
................................
...........
10
C;D E
................................
................................
..................
11
89
................................
................................
.................
12

$ ).1 FG E9
4@( H1I
.
J
1
.
3
5
–
! "
" "
+,
.
K3 EL M
N3 $
6.1 7* $ O " P<= QL RD
SO9$
T
$
7( EL M
R(%;
FG
P<Q" .1 )* ?
.
UV" 7 $ QD E ? LW (X Y E3. O " P<= W;
.
M
<= 0$RR EL ZX
)
O "
:R[ ? )
.
?.\; O1I D ](%; ^ EO$ (X Y ?
P<= ? (3'
E3 P )<=_ ([V 4 D* ` 0 a$ T>$ O a 4X b C"c /R2 TP1$
T $Dd 1 TPef .' TD%f .'
...
.g ) &&, M 4X : hR ? b ) ij2 E3
T7f ?
...
<= k RD M (&c l
OR3 P<= S m% X$ :R[ ? ) P
.
FG 2@I
n
oDR
p(9 `XL
.Q
)<= : C;D &
.
5
-
1
آ ا واوال ا!"ا ت$ز&ا
)
'"ﻡ$)ا
(
*+آ ا!"ا ت$ز&ا
,-!"ز. ا&ا
5
-
1
-
1
# $ %
)
#
(
1
-
1
-
1
-
1
.
. 4X P1$ . k q > ; P<= 4X OR3 P<=
X
:R[ :;<= . k > ; rG$ 83
.
Tns 03
%&c$ 0$f 4 %&c $ m% %&c$ P(. ( %&c k > t% 0
K3 4
.
/c nZ'
ZX$ T (I$ L u<= k > ; R
.
4 .' d( W k;V OR3 P<=. m >(
:
?
R
i%& iO " i;<=
X
$
Y
T
0.18 d(R
:
P(X = x,Y = y)
A
f(x, y)
:
f(x, y) = P(X = x,Y = y)
f(x, y) ≥ 0
∑
x
∑
y
f(x, y) = 1
OR3 k.;
(X, Y)
$ ? ) P<=
f(x, y)
23
:;<=. '(" 23 \ 0 &c$ # .1
X
$
Y
$
R < ?w
Q
'(" ).18 0$ m(5 ?
)
B(" 7* 0$
.(

EL
V
.
OR3 O " P<=
4
f
1
(x)
y
m
. . .
y
2
y
1
X Y
f
1
(x
1
)
f(x
1
, y
m
)
. . .
f(x
1
, y
2
)
f(x
1
,
y1
)
x
1
f
1
(x
2
)
f(x
2
, y
m
)
. . .
f(x
2
, y
2
)
f(x
2
, y
1
)
x
2
. . .
. . .
. . .
. . .
. . .
. . .
f
1
(x
n
)
f(x
n
, y
m
)
. . .
f(x
n
, y
2
)
f(x
n
, y
1
)
x
n
1
f
2
(y
n
)
. . .
f
2
(y
2
)
f
2
(y
1
)
f
2
(y)
0.1
X = x
tx
4 .' t$
P (X = x) = f
1
(x) = ∑
k=1
m
f(x, y
k
)
0.1
Y = y
4 .' t$ tx
P (Y = y) = f
2
(y) = ∑
i=1
n
f(x
i
, y)
:
f
1
(x)
$
f
2
(y)
i.;
"# i
i
)
,
i
(
N1
:
∑ f
1
(x) = 1
$
∑ f
2
(y) =1
1
-
1
-
1
-
2
.
( #
$
F(x, y)
.
./
P<=.
OR3
(X, Y)
' t;
4 .
:
F (x, y) = P (X ≤ x, Y ≤ y) = ∑
u≤x
∑
v≤y
f (u, v)
'
:
d(c T (c (/1$ &c % 4&c
A
X
$ TPD D Qy )(
Y
(R t ? (QY zZ `(
.
t'
:;<=. B(" 6.1 7*
T
{1f ).1 t1
:
`( 7 PD k 0 ,
6
`( k 0 , TPD k 0 , T
6
.
0.1 t1
P(X ≤ 1, Y ≤ 3)
T
P(X ≤ 2, Y ≤ 6)
.
f
1
(x)
6
5
4
3
2
1
X Y
2
1/12
1/12
1/12
1/12
1/12
1/12
0
1/2
1/12
1/12
1/12
1/12
1/12
1/12
1
1
1/6
1/6
1/6
1/6
1/6
1/6
f
2
(y)
`( 7 PD k 0 , 0.1
6
:
P (X = 1 ∧ Y = 6) = f(1, 6) = 1/12
PD k 0 , 0.1
= 1/12 + 1/12 + . . . = 1/2
P (X = 1) = f
1
(1) = ∑
k=1
n
f(1, y
k
)
`( k 0 , 0.1
6
1/12 + 1/12 = 1/6
=
P (Y = 6) = f
2
(6) = ∑
i=1
m
f(x
i
, 6)
P(X ≤ 1, Y ≤ 3) = F(1, 3) = ∑
u ≤1
∑
v ≤3
f(u, v) = 6(1/12) = 1/2 , P(X ≤ 2, Y ≤ 6) = 1
'.*
.
}'(" * ; ~ Q K3 EL M RD ^ P<Q" .1 )* : ?
)
A
:
7*
(.

$ ).1 FG E9
4@( H1I
.
J
1
.
5
5
-
1
-
2
* $ %
1
-
1
-
1
-
3
.
R ?
X
$
Y
i;<=
i;(.
c T
C$( t
.# '(" .1 23
1
4 .'
:
f(x, y) ≥ 0
∫
-∞
+∞
∫
-∞
+∞
f(x, y) dx dy = 1
1
-
1
-
1
-
4
.
( #
$
F(x, y)
$ #
.
l(c
$
7* tc
)
./
(
'("
4 .'
:
F(x, y) = P(X ≤ x, Y ≤ y) = ∫
u=-∞
x
∫
v=-∞
y
f(u, v) du dv
4 .' & .'( ? '(" 23 JR ?w $
:
f(x, y) = ∂²F / (∂x ∂y)
p(9 Q ?
./ 0$ tc
4 .' :;<= ? E "#
:
∫
u=-∞
x
∫
v=-∞
∞
f(u, v) du dv
F
1
(x) = P(X ≤ x) =
∫
u=-∞
∞
∫
v=-∞
y
f(u, v) du dv
F
2
(y) = P(Y ≤ y) =
0.1 $
X
$
Y
;D a
tc :g M i
:
P(a ≤ x ≤ b, c ≤ y ≤ d) = ∫
x=a
b
∫
y=c
d
f(x, y) dx dy
1
-
1
-
1
-
5
.
+$* #
i"# i
)
i,
(
.1 23
(Fonction marginale)
OR3
(X, Y)
4 .' QR ~
:
f
1
(x) = ∫
v=-∞
+∞
f(x, v) dv , f
2
(y) = ∫
u=-∞
+∞
f(u, y) du
'
:
.1 23 R
:;<=. '("
X
$
Y
4 .' 2(
:
<
<
<
<
=
sinon
0
5
1
,
4
0
,
96
)
,
(
y
x
xy
y
x
f
0.1 t1 :;<= ? E "# 7* t'
0 < x < 2
0.1 t1 T
1 < y < 3
.
F
1
(x) = P(X ≤ x) = ∫
u=-∞
x
∫
v= -∞
∞
f(u, v) du dv
* x < 0 : F
1
(x) = 0,
1
OR3 .1 23 \ 0 &c$
(X,Y)
.

EL
V
.
OR3 O " P<=
6
* 0 ≤ x < 4 :
F
1
(x) = ∫
u=-∞
x
∫
v=-∞
∞
uv/96 du dv = 0 + ∫
u=0
x
∫
v=1
5
uv/96 du dv
=1/96 ∫
u=0
x
[ ∫
v=1
5
uv dv] du = 1/96∫
u=0
x
[12u] du = x²/2 (12/96) = x²/16.
* x ≥ 4: F
1
(x) = 1
≥
<
≤
<
=
4
1
4
0
16
/
²
0
0
)
(
1
x
x
x
x
x
F
F
2
(y) = P(Y ≤ y) = ∫
u=-∞
∞
∫
v=-∞
y
f(u, v) du dv
E ?
y < 1
F
2
(y) = 0,
* 1 ≤ y < 5 :
F
2
(y) = 0 + ∫
u=0
4
∫
v=1
y
uv/96 du dv =1/96 ∫
u=0
4
[ ∫
v=1
y
uv dv] du = 1/96 ∫
u=0
4
[u (y² – 1) / 2] du
= (1/2 . 1/96) (y² – 1) (u²/2)
0
4
= (1/(2 . 96)) (y² – 1) (16/2) = (y² – 1) / 24
* y ≥ 5 : F
2
(y) = 1
≥
<
≤
−
<
=
5
1
5
1
24
/
)
1
²
(
1
0
)
(
2
y
y
y
y
y
F
P(0 < x < 2) = F
1
(2) – F
1
(0) = 4/16 = ¼ ,
P(1 < y < 3) = 8 / 24 = 1/3
5
-
1
-
3
,
1 M
X
T
Y
0 5(" .1 23 ij2 Ti%& i;<=
(X|Y = y)
t;
f(x/y)
4 .' t $
:
)
(
)
,
(
)
(
)
,
(
)
/
(
1
x
X
P
y
Y
x
X
P
x
f
y
x
f
y
x
f
=
=
=
=
=
8 z& i c& FG R ZX $
5(" ).1
:
)
(
)
(
)
/
(
A
P
B
A
P
A
B
P
∩
=
6.1 7*
45("
(Distribution conditionnelle)
0
X
N1
= y
Y
P<= ` .g X
X
3; R
Y
).1$
f(x/y)
# &
.
'
.
?
X
$ :;( &c % 4D R PD k 0 , )(
Y
PD )( : &% .& (L
)( $
.
.1 7* t'
0 6
Y|X = 1
T
* t'
.1 i
0 i
X|Y = 0
$
X|Y = 2
.

$ ).1 FG E9
4@( H1I
.
J
1
.
7
1 M
X
$
Y
tc i i;<=
:
P(c ≤ Y ≤ d / x ≤ X ≤ x + dx) = ∫
c
d
f(y/x) dy
5
-
1
-
4
-
tx$ O " OR[ 0.1
4 .'
:
f(x, y) = P(X = x,Y = y)
tc :;<= p1I . 0.1 ? <
:
P (X = x) = f
1
(x)
"# 23 k.;$
.
'(" 7* 089 ? SR ~2 :;<= 4./ 0.1
:
F (x, y) = P (X ≤ x, Y ≤ y)
' k >D ZX m%R;
P(.$ %& )<= ? E
.
. c3 P<= Z9V; i C(" :;<= p1I 6.1 7* ? <
)
0
83
(
tc
:
P(X/Y = 0)
0 5(" ).1 A,
X
P & W;
:
)
(
)
,
(
)
(
)
,
(
)
/
(
1
x
X
P
y
Y
x
X
P
x
f
y
x
f
y
Y
X
P
=
=
=
=
=
=
5
-
2
.
"
!
5
-
2
-
1
"
5
-
2
-
1
-
1
0$f EL M
R.
:O " :[1 i
A
$
B
i' G i8& ic
:
P(A∩B) = P(A) P(B)
? 8%c
ZX
i ; TP &
i%& iO " i;<=
X
$
Y
G i&
i' G &2$
:
P(X = x, Y = y) = P(X = x) P(Y = y)
f(x, y) = f
1
(x) f
2
(y)
tc : :;<= i ' 1 M
:
P(X ≤ x, Y ≤ y) = P(X ≤ x) P(Y ≤ y)
F(x, y) = F
1
(x) F
2
(y)
i;<= i z
.# '(" 7* ' ?w i i&
)
'(" 23 $
(
: H E M
:.'(; :"X
)
23 :"X : $
.(
X
0
1
2
Y
1
0
P(x/y = 0)
0
1
0
P(y/x = 1)
0
1
P(x/y = 2)
1/2
0
1/2

EL
V
.
OR3 O " P<=
8
'
.
?
X
$
Y
4 .' 2( .# '(" 23 N1 ?(.
:
<
<
<
<
=
sinon
0
5
1
,
4
0
,
)
,
(
y
x
cxy
y
x
f
:;<= i :
X
$
Y
:&
.
Soit c = c
1
.c
2
=> f(x, y) = c
1
c
2
xy = c
1
x . c
2
y => f(x, y) = f
1
(x) . f
2
(y)
'
2
.
?
X
$
Y
$
Z
%&
.
E3
X
$ &c %& D M PD k 0 , )(
Y
)(
D M PD k 0 ,
.
$
Z
: &% .& (L
X’
$
Y’
0 , )( 6 k i83w iZ
PD k
/
&c %& :D .g M
.
i @ ?
X
$
Y
if i&
P(X = x,Y = y) = P(X = x) P(Y = y)
` E' R
X
$
Y
.
Tn ? q k
i
Z
? &
X’
83.2
:
P(X’= 0, Z = 2) = 1/2
≠
P(X’ = 0) P(Z = 2) = (1/4)(1/2) = 1/8
01
.
•
c' G
X
? &
Y
$
Y
? &
Z
i ZQ2
X
? &
Z
? SR
.
;D X 08& q
$ C
(dépendance)
C;D$ C;D BRQ2 T;$L ) D <9f ZX ? T
T>\ C;D $ z &
...
6.1 08& &c Rcj2 08& ? `c R p(9 Q ?
.
•
`& K E3. FG . <3' P(. P<= 1 M
( p L 1$ ` k :;<=
.QR
.
`( i SL `( M
A
:. ) %9 ? A(& E M m[$ C;D ? `R
Y=ax+ b
`( M T
B
`( M P E 5;D
C
:;<= 08& d R2
.
X
Y
0
1
Z
X’
0
1
2
X’
0
1
2
Z
0
2
0
¼
¼
0
0
1
0
p
x
¼
½
¼
p
z
½
½
1
½
½
2
½
0
½

$ ).1 FG E9
4@( H1I
.
J
1
.
9
234 5*
5
6
1
.
7 5* '(8 % '()* 9 :; <3
.
? <3' EQ 3 3 Q\ ? )<= .g $ :;<= 08&
PL O9$ hOc S R;$ ),
:
•
c' G
X
$
Y
s. qLRs 4OsR3 7s* is; :& :;<=
p
A $
n
1
$
n
2
ijs2
:
X + Y ~ B(n
1
+ n
2
, p)
.
•
X
Y
!"#"$ %&'" !( )* +
λ
1
λ
2
!,-
:
X + Y ~ P(λ
1
+ λ
2
)
.
•
X
Y
/01 )0* +
X ~ N(µ²
1
, σ²
1
)
Y ~ N(µ²
2
, σ²
2
)
!,0-
:
X + Y ~ B(µ²
1
+µ²
2
, σ²
1
+σ²
2
)
X – Y ~ B(µ²
1
– µ²
2
, σ²
1
+σ²
2
)
5
-
2
-
2
X
Y
!2"3 !
!4)
5
f(x, y)
6 7 3 7- 78
.
µ
x
= E(X) = ∑
x
∑
y
x f(x, y) ,
µ
y
= E(Y) = ∑
x
∑
y
y f(x, y)
σ²
x
= E[(x – µ
x
)²] = ∑
x
∑
y
(x – µ
x
)² f(x, y) , σ²
y
= E[(y – µ
y
)²] = ∑
x
∑
y
(y – µ
y
)² f(x, y)
9
71
X
Y
!
! *
:
µ
x
= E(X) = ∫
-∞
+∞
∫
-∞
+∞
x f(x, y) dx dy , µ
y
= ∫
-∞
+∞
∫
-∞
+∞
y f(x, y) dx dy .
σ²
x
= E[(x – µ
x
)²] = ∫
-∞
+∞
∫
-∞
+∞
(x – µ
x
)² f(x, y) dx dy ,

:;<
V
.
72= 72"3 >?
10
σ²
y
= E[(y – µ
y
)²] = ∫
-∞
+∞
∫
-∞
+∞
(y – µ
y
)² f(x, y) dx dy
.
@ 3? %&'" =&A
B& C ?
:
*1 "4?
:
E(y), E(x)
5
σ²
x
, σ²
y
E(x) = ∑
x
∑
y
x f(x, y) = 1(1/8 + ¼ + 1/8) – 5(1/4 + 1/8 + 1/8) = 1/2 – 5/2 = –4/2 = –2
E(Y) = ∑
x
∑
y
y f(x, y) = –4 (1/8 + ¼) – 2 (1/4 + 1/8) + 7 (1/8 + 1/8) = –1/2
σ²
x
= E[(x – µ
x
)²] = ∑
x
∑
y
(x – µ
x
)² f(x, y)
= (1 + 2)² (1/8 + ¼ + 1/8) + (–5 + 2)² (1/4 + 1/8 + 1/8) = 9 (1/2) + 9 (1/2) = 9
σ²
y
= E[(y – µ
y
)²] = ∑
x
∑
y
(y – µ
y
)² f (x, y)
= (–4 + 1/2)² (1/8 + 1/4) + (–2 + 1/2)² (1/4 + 1/8) + (7 + 1/2)² (1/8 + 1/8)
= 49/4 (3/8) + 9/2 (3/8) + (15/2)² (2/8) = 651 / 32 = 20,34
7D6 EA FAG#$ 7)$* ) : *1
f
1
(x)
f
2
(y)
.
E(x) = ∑
x
x f
1
(x) = 1(4/8) – 5(4/8) = –2
V(x) = E(x²) – E²(x)
= [1²(4/8) + (– 5)²(4/8)] – (–2)² = 9
5
-
2
-
3
5
-
2
-
3
-
1
@ 3? &( C &
(Covariance)
72=
(X, Y)
B&
:
Cov (X, Y) = σ
xy
= E[(X – µ
x
)(Y – µ
y
)]
71 9
X
Y
!4) !
:
σ
xy
= ∑
x
∑
y
(x – µ
x
)(y – µ
y
)f(x, y)
71 9
X
Y
!
! *
:
σ
xy
= ∫
-∞
+∞
∫
-∞
+∞
(x – µ
x
) (y – µ
y
) f(x, y) dx dy
5
-
2
-
3
-
2
1
.
&( H&
!
I=*
:
Cov(X, Y) = E[(X – µ
x
)(Y – µ
y
)]
= E[XY – Xµ
y
– µ
x
Y + µ
x
µ
y
]
= E(XY) – E(X)E(Y) – E(X)E(Y) + µ
x
µ
y
7
-2
-4
y
X
1/8
1/4
1/8
1
1/8
1/8
1/4
-5
f
1
(x)
7
-2
-4
Y
X
4/8
1/8
1/4
1/8
1
4/8
1/8
1/8
1/4
-5
1
2/8
3/8
3/8
f
2
(y)

JK1K L :MA
BN& O;1P
.
Q
1
.
11
=> Cov(X, Y) = E(XY) – E(X) E(Y)
2
.
71 9
X
Y
!)* F
1
! BN& %S" T2;M
E(XY) = E(X) E(Y)
U=
:
Cov(X, Y) = E(XY) – E(X) E(Y) = E(XY) – E(XY) =>
Cov (X, Y) = 0
3
.
71 9
X
Y
)* V !)* !
:
2 Cov (X, Y)
±
Var (X ± Y) = V(X) + V(Y)
4
.
&W? - XK OAY Z !" K @ 3? &( 7)4? 7)
:
|σ
xy
| ≤ σ
x
σ
y
5
.
71 9
X
Y
[ \ !4( !
Y = X
!,-
:
Cov(X , Y) = σ
xy
= σ
x
σ
y
6
.
Cov(X + a, Y) = Cov(X , Y)
7
.
Cov (X, X) = V(X)
8
.
Cov(aX + bY, Z) = aCov(X , Z) + bCov(Y , Z)
.
X
Y
!)* + F
/1
E(X) = 100, V(X) = 100, E(Y) = 100, V(Y) = 100
.
Z
/1 + F
Z = 3X – 10
•
: ]*1
:
E(Z), V(Z), E(Z²), V(Z + Y), Cov ( Z + Y, X)
•
]*1
V(Z + X), V(Z) + V(X)
I=#
Cov (Z, X)
.
E(Z) = 3E(X) -10 = 290
V(Z) = 3²V(X) = 900
E(Z²) = V(Z) + E(Z)² = 900+290² = 85000
V(Z + Y) = V(3X – 10 + Y) = 3²V(X) + V(Y) = 900 + 100 = 1000 ( X et Y ind.)
(propriété 8)
Cov (Z + Y, X) = Cov(Z, X) + Cov(Y, X)
(propriété 2 et 6)
= Cov(3X – 10, X) + 0
= 3Cov(X, X) (propriété 8)
= 3V(X) = 3(100) = 300 (pro. 7)
5
-
2
-
4
^_
7
)
2
(
* ! I=*
y
x
xy
σ
σ
σ
b*&
0
9
71
X
Y
!)*
7^_
)
5
(
U I=*
71 9
X
Y
\ !4( !
b*& * !,-
1
.
1
!"& A)- 5cd^ 8 >W e$ f f
[- !)* !? !"& ! V <; &* @ 3? &(
.
g D f U= g D : \ 7))h 9 Bi 78?
-
.
? $ 58"Y" ! 5j(WK HN 7KA @ 3? &( 7A 7k E# :$)?$
.
j 3
9 F'[
W"l? "i E[)#K
E[)#K H& 9 )$#
.

:;<
V
.
72= 72"3 >?
12
7^_ m M 7nY
4
! I=*
7(*=
S o
n
$
)
p
1
(
)
1
(
:
1
1
≤
≤
−
y
x
xy
σ
σ
σ
.
l0i :0Y 0
7(*= :*
:
y
x
xy
r
σ
σ
σ
=
K : * 5? $ j(WK q)
j(W
.
71 9
r
FA
! E")
)* r Fst ! V 5
!
.
.
u$* E ? 9 W"l? @ 3? %&'" j(WK @ 3? &( AY
.
Cov(X, Y) = E(XY) – E(X) E(Y)
E(XY) = 1(–4)(1/8) + (1)(–2)(2/8) + (1)(7)(1/8) + (–5)( –4)(2/8) + (–5)( –2)(1/8) +
(–5)(7)(1/8) = 1.75
E(X) = 1(4/8) + (–5)(4/8) = –2, E(Y) = –4(3/8) – 2(3/8) + 7(2/8) = –1/2.
Cov(X, Y) = 1.75 – (–2)( –1/2) = 0.74
V(X) = E(X²) – E²(X) = 1(4/8) + (–5)²(4/8) – (–2)² = 9 => σ
x
= 3,
V(Y) = E(Y²) – E²(Y) = 20.34 => σ
y
= 4.5.
05
.
0
)
5
.
4
(
3
75
.
0
=
=
=
y
x
xy
r
σ
σ
σ
.
:?
r
v";_$ B4_ j(WK f)&
.
5
-
2
-
5
6 7 3? %&'" 78 7$ !)* r ! E")
)
7 3? 7- 78
(
8 OAY :D 9
3i
)
7- 3i 8
:(
f(x, y) = f
1
(x) f
2
(y)
! b
:
P(X = x, Y = y) = P(X = x) P(Y = y)
@ 3? &( !"& 7h wli 9 5j(WK : E[M $ j(WK f) m M 7nY
Cov(X, Y)
= E(XY) – E(X) E(Y)
!,0- E[)0#K 71 9 BN& %S" T2;_ ( Ux A
E(XY)
=
E(X)
E(Y)
cd^ >W e$ f f
.
j(WK : FAG*&
y
x
xy
r
σ
σ
σ
=
7&8Az L n(= !"& ! ]{ B2;1P 5? $ j(WK D|
D|? li
.