Genetic engineering or (gene manipulation, gene cloning, recombinant DNA technology, genetic modification, and the new genetics).
Over the past 35 years or so this has been demonstrated in a spectacular way by the emergence of genetic engineering. This field has grown rapidly to the point where, in many laboratories around the world, it is now routine practice to isolate a specific DNA fragment from the genome of an organism, determine its base sequence, and assess its function. The technology is also now used in many other applications, including forensic analysis of scene-of-crime samples, paternity disputes, medical diagnosis, genome mapping and sequencing, and the biotechnology industry.
Genetic engineering is the process of transferring specific genes from the chromosome of one organism and transplanting them into the chromosome of another organism in such a way that they become a reproductive part of the new organism. The process that produces the resulting recombinant DNA involves four steps:
The desired DNA is cleaved from the donating chromosome by the action of restriction enzymes, which recognize and cut specific nucleotide segments, leaving a “sticky end” on both ends. The restriction enzymes also splice the receiving chromosome in a complementary location, again leaving “sticky ends” to receive the desired DNA.
The desired DNA fragment is inserted into a vector, usually a plasmid, for transfer to the receiving chromosome. Plasmids are an ideal vector because they replicate easily inside host bacteria and readily accept and transfer new genes. Plasmids are circular DNA molecules found in the cytoplasm of bacteria that bond with the desired DNA fragment with the help of the joining enzyme, DNA ligase, to create the resulting recombinant DNA.
When the host cell reproduces, the plasmids inside also reproduce, making multiple clones of their DNA. Because the plasmid DNA contains the desired as well as unwanted DNA clones, the entire product is referred to as a gene library. The desired gene is similar to one book in that library.
To recover the desired DNA, the current technology is to screen unwanted cells from the mixture and then use gel electrophoresis to separate the remaining genes by movement on an electric grid. Gel electrophoresis uses a positively charged grid to attract the negatively charged DNA fragments, thereby separating them by size, because the smaller ones will migrate the most. Radioactive or fluorescent probes are added, which attract and bind with the desired DNA to produce visible bands. Once isolated, the DNA is available for commercial use.
The use of recombinant DNA technology has become commonplace as new products from genetically altered plants, animals, and microbes have become available for human use. In 1997, Dolly made headlines as the first successfully cloned large mammal (sheep). Since then there have been many similar advances in medicine, such as treatments for cancer; many advances in agriculture, such as transgenic insect-resistant crops; and many advances in animal husbandry, such as growth hormones and transgenic animals (an animal that has received recombinant DNA).
Most biotechnologists envision DNA technological applications as one of the new frontiers in science with tremendous growth and discovery potential.
Medicine
Genetic engineering has resulted in a series of medical products. The first two commercially prepared products from recombinant DNA technology were insulin and human growth hormone, both of which were cultured in the E. coli bacteria. Since then a plethora of products have appeared on the market, including the following abbreviated list, all made in E. coli:
Tumor necrosis factor. Treatment for certain tumor cells
Interleukin-2 (IL-2). Cancer treatment, immune deficiency, and HIV infection treatment
Prourokinase. Treatment for heart attacks
Taxol. Treatment for ovarian cancer
Interferon. Treatment for cancer and viral infections
In addition, a number of vaccines are now commercially prepared from recombinant hosts. At one time vaccines were made by denaturing the disease and then injecting it into humans with the hope that it would activate their immune system to fight future intrusions by that invader. Unfortunately, the patient sometimes still ended up with the disease.
With DNA technology, only the identifiable outside shell of the microorganism is needed, copied, and injected into a harmless host to create the vaccine. This method is likely to be much safer because the actual disease-causing microbe is not transferred to the host. The immune system is activated by specific proteins on the surface of the microorganism -e. DNA technology takes that into account and only utilizes identifying surface features for the vaccine. Currently vaccines for the hepatitis B virus, herpes type 2 viruses, and malaria are in development for trial use in the near future.
Agriculture
Crop plants have been and continue to be the focus of biotechnology as efforts are made to improve yield and profitability by improving crop resistance to insects and certain herbicides and delaying ripening (for better transport and spoilage resistance). The creation of a transgenic plant, one that has received genes from another organism, proved more difficult than animals. Unlike animals, finding a vector for plants proved to be difficult until the isolation of the Ti plasmid, harvested from a tumor-inducing (Ti) bacteria found in the soil. The plasmid is “shot” into a cell, where the plasmid readily attaches to the plant's DNA. Although successful in fruits and vegetables, the Ti plasmid has generated limited success in grain crops.
Creating a crop that is resistant to a specific herbicide proved to be a success because the herbicide eliminated weed competition from the crop plant. Researchers discovered herbicide-resistant bacteria, isolated the genes responsible for the condition, and “shot” them into a crop plant, which then proved to be resistant to that herbicide. Similarly, insect-resistant plants are becoming available as researchers discover bacterial enzymes that destroy or immobilize unwanted herbivores, and others that increase nitrogen fixation in the soil for use by plants.
Geneticists are on the threshold of a major agricultural breakthrough. All plants need nitrogen to grow. In fact, nitrogen is one of the three most important nutrients a plant requires. Although the atmosphere is approximately 78 percent nitrogen, it is in a form that is unusable to plants. However, a naturally occurring rhizobium bacterium is found in the soil and converts atmospheric nitrogen into a form usable by plants. These nitrogen-fixing bacteria are also found naturally occurring in the legumes of certain plants such as soybeans and peanuts. Because they contain these unusual bacteria, they can grow in nitrogen-deficient soil that prohibits the growth of other crop plants. Researchers hope that by isolating these bacteria, they can identify the DNA segment that codes for nitrogen fixation, remove the segment, and insert it into the DNA of a profitable cash crop! In so doing, the new transgenic crop plants could live in new fringe territories, which are areas normally not suitable for their growth, and grow in current locations without the addition of costly fertilizers!
Animal Husbandry
Neither the use of animal vaccines nor adding bovine growth hormones to cows to dramatically increase milk production can match the real excitement in animal husbandry: transgenic animals and clones.
Transgenic animals model advancements in DNA technology in their development. The mechanism for creating one can be described in three steps:
Healthy egg cells are removed from a female of the host animal and fertilized in the laboratory.
The desired gene from another species is identified, isolated, and cloned.
The cloned genes are injected directly into the eggs, which are then surgically implanted in the host female, where the embryo undergoes a normal development process.
It is hoped that this process will provide a cheap and rapid means of generating desired enzymes, other proteins, and increased production of meat, wool, and other animal products through common, natural functions.
Ever since 1997 when Dolly was cloned, research and experimentation to clone useful livestock has continued unceasingly. The attractiveness of cloning is the knowledge that the offspring will be genetically identical to the parent as in asexual reproduction. Four steps describe the general process:
A differentiated cell, one that has become specialized during development, with its diploid nucleus is removed from an animal to provide the DNA source for the clone.
An egg cell from a similar animal is recovered and the nucleus is removed, leaving only the cytoplasm and cytoplasm organelles.
The two egg cells are fused with an electric current to form a single diploid cell, which then begins normal cell division.
The developing embryo is placed in a surrogate mother, who then undergoes a normal pregnancy.