background image

Three-day fever

A.J. Akakpo

B.P. 12 104 Dakar-Yoff, Senegal

E-mail: ayia11612@gmail.com

Summary

Three-day fever is a viral disease caused by an Ephemerovirus of the family 

Rhabdoviridae, transmitted by arthropod vectors. It is common in tropical and sub-

tropical regions, where it affects mainly domestic cattle and buffaloes, especially 

in intensive dairy or fattening production systems. It is of economic importance 

because it reduces milk production and fertility and causes abortion. The disease 

is generally benign. It manifests in several susceptible subjects simultaneously, 

with a sudden episode of fever accompanied by muscle involvement with arthritis, 

stiffness of the limbs, and lameness, followed by rapid recovery. The presence of 

a serofibrinous exudate in the joints is indicative of the disease. Clinical diagnosis 

is often difficult in the absence of pathognomonic signs. Epidemiological factors 

(proliferation of arthropod vectors), associated with a short-lived fever and the 

presence of many immature neutrophils, point strongly to three-day fever. In the 

absence of any specific treatment, the symptoms are treated with antibiotics and 

anti-inflammatories. Medical prophylaxis currently uses live attenuated vaccines, 

pending the development of recombinant vaccines, which are giving promising 

results.

Keywords

Arbovirosis – Buffalo – Cattle – Ephemorovirus  –  Rhabdoviridae  – Three-day fever – 

Tropical region.

Rev. Sci. Tech. Off. Int. Epiz., 2015, 34 (2), 533-538

Introduction

Three-day fever (also known as bovine ephemeral fever, 
bovine epizootic fever, three-day stiffsickness, three-day 
sickness and dengue of cattle) is a virulent, inoculable and 
non-contagious viral infectious disease of domestic cattle 
and buffaloes. It is caused by an RNA virus belonging 
to the family Rhabdoviridae, transmitted by arthropod 
vectors. Clinical signs of the disease include mild fever 
associated with joint pains, muscular weakness, stiffness 
of the limbs and lameness, sometimes accompanied by 
anorexia and depression. Although morbidity may affect  
100% of the herd, mortality is generally low (1–2%). In 
most cases the disease resolves itself suddenly within 
three days. This disorder is of considerable importance for 
intensive dairy farms because of its impact on reproduction 
and because it can lead to a decrease, or even complete 
cessation, in milk production.

Background  

and geographical distribution

Three-day fever is most often reported in countries close 
to the equator and in tropical and subtropical regions of 

Africa, Asia and Australia, as well as in a few temperate 
zones of Asia.

In 1878, Schweinfurth (1) wrote a brief description of the 
disease in Africa. However, it was Piot (2) who gave us the 
first scientific description in his excellent report on the 
Egyptian epidemic of 1895. He referred to the disease as 
epizootic dengue fever of cattle to mark the similarity between 
the signs of the disease in animals and those of dengue 
fever in humans. In 1907, Bevan (3) described the clinical 
signs of the disease in former Northern Rhodesia (now  
Zambia). In 1910, Freer (4) highlighted two important 
points:

  the need for intravenous inoculation of a healthy animal 
with blood taken from a sick animal to reproduce the 
disease

  the intervention of arthropod vectors in the transmission 
and spread of the disease.

In 1967Van der Westhuizen (5) succeeded in isolating and 
characterising the causal agent as a member of the family 
Rhabdoviridae. In 1974, Davies and Walker (6) demonstrated 
the possibility of viral replication in biting arthropods, by 
isolating the virus from a mixture of Culicoides during an 
epizootic outbreak of the disease in cattle in Kenya.


background image

534

Rev. Sci. Tech. Off. Int. Epiz., 34 (2)

Between 1936 and 1940, the disease spread beyond Africa 
to other countries. Subsequently, the disease has been 
reported in the Near and Middle East (Israel, Syria, Iran, 
Iraq), Central Asia (Pakistan, India, Bangladesh, People’s 
Republic of China), Southeast Asia, Australia and later 
Japan (1968) (7, 8, 9, 10, 11).

In Senegal, despite the lack of scientific reports, the disease 
is well known to Fulani herders, who refer to it as ‘rainy 
season fever’. Rural veterinarians are also well acquainted 
with it.

The disease is unknown in New Zealand, Europe and the 
Americas.

Affected species

Species belonging to the genus Bos (taurine cattle, zebu) and 
domestic buffaloes are responsive and susceptible to three-
day fever. Experimentally infected goats and sheep and many 
wild herbivores, such as wildebeest (Connochaetes taurinus), 
buffalo (Syncerus caffer), hartebeest (Alcelaphalus buselaphus), 
waterbuck (Kobus ellipsiprymnus),  kudu and giraffes, are 
responsive but not susceptible because they experience a 
silent infection with seroconversion (12, 13, 14).

Importance

The importance of three-day fever is largely economic in 
nature. While it does not cause significant mortality, apart 
from during the rare epizootics reported in Egypt and South 
Africa (15, 16), on intensive dairy farms the disease leads 
to abortion and a very sharp drop in milk production (8, 
13, 17, 18).

Aetiology

The three-day fever virus is a cone-shaped capsule with a 
spiky surface, similar to the rabies virus. The nucleocapsid, 
180 nm in length and 73 nm in diameter, is formed of a 
negative-sense single-stranded RNA and proteins and is 
helical in structure. The lipoprotein envelope has fine 
projections on its surface called spicules.

The virus contains five major proteins (19). These are:

– the glycoprotein envelope (G protein), which is 
immunogenic because it induces neutralising antibodies 
that aid resistance

–  four non-membranous proteins: the N protein, generally 
associated with the nucleocapsid, the L protein, which is a 
polymerase, and the matrix proteins M1 and M2.

There are four serotypes of this virus, only one of which is 
pathogenic. In 1986, a fifth serotype was reported to have 
been isolated in Japan, but this was unconfirmed (20).

Culture is possible on cell lines (BHK-21 and Vero), as well 
as on young mouse brains.

The virus is vulnerable under external conditions. It is stable 
at a pH of between 5 and 10 and inactivated by the meat 
maturation process, during which the pH falls below 5. The 
virus is very sensitive to disinfectant chemicals and to lipid 
solvents.

The pathogenicity of the three-day fever virus is variable; 
as a general rule it is not particularly pathogenic, making 
the disease fairly mild, but there are some strains with quite 
high pathogenicity that cause more serious sickness in 
lactating females and fattening animals.

The three-day fever virus belongs to the genus 
Ephemerovirus. It belongs to the group Lyssavirus in the 
family  Rhabdoviridae  (21). As it belongs to the group 
Lyssavirus, the three-day fever virus shares antigens with the 
Adelaide River, Kimberley and Berrimah viruses, as well as 
with the Puchong and Malakal viruses. This can cause cross-
reactions and problems interpreting serological reactions. 
According to Nandi & Negi (13), a subacute infection with 
the Kimberley virus induces weak production of antibodies 
that neutralise the three-day fever virus, but confers no real 
protection. 

The most powerful protection comes from the strong and 
lasting immunity that develops in animals that recover. 
This humoral immunity is based on neutralising antibodies 
directed against the glycoprotein of the envelope. It seems 
that this confers relative, rather than absolute, immunity 
because relapses in cured animals have been reported by  
St Georges in Australia (17). The author also speculates 
on the possible role of related rhabdoviruses, such as the 
Kimberley virus, which triggers the initial appearance of 
non-protecting xenogenic antibodies, leading to possible 
confusion with specific antibodies during serological testing.

Pathogenesis

After entering the body, the three-day fever virus produces 
polynuclear neutrophils in the blood 24 hours after 
infection. Infection of endothelial cells, which is associated 
with hypocalcaemia, leads to the development of clinical 
signs and lesions (8). Inflammation and toxaemia in 
the blood vessels, joints and mucosa are linked with the 
massive production of interferon in cells infected with the 
virus, with plasma fibrinogen found in the joints and the 
peritoneal, pleural and cardiac cavities. A sharp fall in blood 


background image

535

Rev. Sci. Tech. Off. Int. Epiz., 34 (2)

calcium levels is responsible for the signs of nerve paralysis 
observed.

Clinical signs

The incubation period under normal conditions is very 
short: 36–48 hours. Under experimental conditions, 
this may vary from 29 hours to 10 days, but the average  
is three to four days.

The disease causes a sudden rise in temperature and affects 
the general state of health. There is a similar sudden fall 
in temperature, culminating in a general recovery after 
three to five days without complications. Hyperthermia 
generally occurs in two phases (22, 23). During the first 
peak of fever, the clinical signs are discreet and hard to 
detect. In more severely affected animals there is sudden 
fever with temperatures reaching 40–41°C, as well as 
depression, loss of appetite, anorexia, stiff gait, salivation 
and nasal discharge, inflammation of the joints, rapid 
pulse and respiration rate, shivering and oedema of the 
subcutaneous muscles, eye sockets and head. The animal, 
sometimes lying in sternal recumbency and sometimes on 
its side, shows some reflexes, but these gradually disappear 
as the disease progresses. Loss of the swallowing reflex, 
lack of rumination, constipation and profuse salivation 
become evident. Total loss of reflexes followed by coma 
leads to the death of the laterally recumbent animal. It 
should be noted, however, that these clinical signs may 
also disappear as suddenly as they appeared. The second 
peak of fever occurs 12–24 hours after the first, affecting 
the lungs (tachypnea, rattling) and causing lacrimation. 
Secondary complications may include signs of pneumonia 
and pulmonary emphysema, abundant discharge, stiffness 
of the limbs, arthritis, lameness and lasting paresis, forcing 
the animal into prolonged sternal recumbency. This phase 
of hyperthermia may last from two to four days.

In addition to hyperthermia, other clinical signs may appear 
or persist, such as subclinical mastitis leading to a sharp 
reduction in milk yield, abortion in 5% of pregnant females 
and infertility in bulls. Generally speaking, animals in good 
physical condition (fat, good milkers) show more severe 
signs than lean animals and non-lactating females.

The disease can lead to death in some individuals following 
a gradual loss of reflexes, or to cessation of swallowing and 
rumination. But other individuals recover in five to six days 
without complications (pulmonary emphysema, locomotor 
ataxia, persistent stiffness of the limbs). Milk yield in 
recovered milking cows is always lower than it was prior 
to the disease.

Lesions

Serofibrinous polyserositis, of varying degrees, in the 
articular synovial membranes and in the thoracic and 
peritoneal cavities is characteristic of the disease (23). 
Serous surfaces may also show signs of bleeding and 
oedema to varying degrees. The oedema fluid in the 
thoracic or abdominal cavity contains fibrin. In the joints, 
this periarticular inflammatory fluid is yellow or brown and 
gelatinous in appearance.

Other lesions may also occur, such as pulmonary and 
lymph node oedema, inflammation of the parietal and 
visceral pleura, pericarditis (especially at the base of the 
heart), necrosis at certain points of the skeletal muscles, 
and, sometimes, emphysematous lesions of the lungs, 
mediastinum and subcutaneous connective tissue.

Epidemiology

Three-day fever is especially common in tropical and sub-
tropical regions of Africa, Asia and Australia, as well as 
in certain temperate regions of Asia. It affects intensively 
reared domestic cattle and buffaloes and has a significant 
economic impact. The disease is seasonal, with increased 
prevalence in the hot, wet season (rainy season in tropical 
and subtropical zones, summer and autumn in temperate 
zones), when conditions favour the proliferation of 
arthropod vectors.

The main sources of infection are sick live animals and 
asymptomatic carriers of the virus, as well as arthropod 
vectors. Owing to its vulnerability (low resistance to 
desiccation, heat and ultraviolet rays, etc.), the virus is non-
persistent in the external environment.

The responsiveness and susceptibility of individuals are 
influenced by both intrinsic and extrinsic factors. One of 
the intrinsic factors that has a significant influence is the 
species of the animal. Three-day fever is pathogenic mainly 
to domestic cattle and buffaloes. Wild ruminants (eland, 
buffalo, wildebeest) often show no signs of infection. Heavy 
animals and dairy cows are more susceptible and succumb 
to severe forms of the disease. As demonstrated by Momtaz 
et al. in Iran, in a given herd, the prevalence of the disease 
is higher in females than in males and it also increases with 
age (14). Extrinsic factors include: a warm, wet season; 
heavy rain; physical fatigue; low-lying, wet swampy areas; 
flood plains and irrigation zones.

Direct transmission of three-day fever is unknown; 
transmission is exclusively indirect via vector-borne 
hematophagous arthropods belonging to various species 


background image

536

Rev. Sci. Tech. Off. Int. Epiz., 34 (2)

of mosquitoes or Culicoides (24), particularly the family 
Culicidae, which includes the genera Culex, Aedes and 
Anopheles 
(Culex annulirostris and Anopheles bancrofti are the 
prime suspects), and the family Ceratopogonidae (Culicoides 
brevitarsis 
and C. imicola) (16, 25).

Three-day fever develops in an enzootic or sporadic form 
in infected countries where the vectors survive throughout 
the year. Prevalence increases with the proliferation of 
arthropod vectors in favourable seasons (the rainy season in 
tropical zones or summer and autumn in temperate zones). 
Prevalence decreases once again with the arrival of the less 
conducive dry or cold season. During epizootic outbreaks, 
morbidity may be high (50–100%), but mortality is always 
low (2–3%). When the disease appeared in Saudi Arabia, 
morbidity of 59% and mortality of less than 1% were 
recorded (26).

Diagnosis

Three-day fever can be diagnosed either in the field or in 
the laboratory. The first cases are difficult to diagnose in 
areas previously free from the disease, and diagnosis is not 
always any easier in areas where the disease is well known, 
because of its non-characteristic appearance and its discreet 
early clinical signs.

In the field, diagnosis of the disease relies on 
epidemiological and clinical elements and lesions. In 
general, three-day fever may be suspected in an enzootic 
zone or in the season conducive to the proliferation of 
arthropod vectors (hot, wet season, low-lying, wet, swampy 
areas, delta or flood plain). It should also be suspected in 
an intensive dairy or fattening cattle system with improved 
breeds if several animals simultaneously present with fever, 
stiffness of the limbs and lameness, and subsequently 
recover rapidly. The presence of a serofibrinous exudate in 
the joints is also highly indicative of the disease.

A differential diagnosis may be necessary, depending on 
the location, for hyperthermic and nervous or respiratory 
disorders. Diseases that induce hyperthermia include 
Rift Valley fever and bluetongue. The ability to induce 
hyperthermia is not the only similarity between these 
two diseases: both are caused by viruses transmitted 
by arthropod vectors (arboviroses), and both occur 
mainly in the hot, wet season, which is conducive to 
the proliferation of arthropod vectors. Diseases causing 
nervous and respiratory symptoms include botulism, 
ehrlichiosis of ruminants, intoxication by poisonous plants 
(genera  Crotalaria,  Diplodia), hypocalcaemia, pulmonary 
emphysema and acute pulmonary oedema.

In general, three-day fever evolves benignly towards a cure 
in three to four days if there are no complications.

In the field, the disease cannot be diagnosed with certainty 
if there are no pathognomonic signs, making it necessary to 
resort to laboratory tests to confirm or invalidate a clinical 
suspicion.

Laboratory diagnosis entails both direct and indirect 
microbiological testing of blood samples taken from animals 
in the hyperthermic phase, to identify the virus and specific 
antibodies.

Direct microbiological diagnosis involves the isolation and 
detection of the pathogenic agent. Blood collected during 
the hyperthermic phase in a tube with an anticoagulant can 
be used for direct examination, as well as to isolate the virus 
in a culture and identify the viral genome.

–  Histological analysis of a blood smear on a slide can be 
used for a blood cell count, as well as immunofluorescence.
a) A cell count is used to determine the number of formed 
elements in the blood. The presence of neutrophilia 
(neutrophils significantly higher than 30%) associated with 
many immature forms strongly indicates three-day fever. 
This test can be used for rapid diagnosis in the field.
b) Immunofluorescence can be used to detect and identify 
the virus or its antigens on the smear using immune 
serum (the virus-specific antibodies are marked with a 
fluorochrome).

  The virus is isolated either in a culture of blood leukocytes 
on cell lines (BHK-21 or Vero) or by intracerebral inoculation 
of newborn mice. The virus is identified by neutralisation of 
the viral culture in the presence of the specific antiserum or 
immunofluorescence on the cell lawn. A result is obtained 
after three to four days using this costly reaction.

  The viral genome can be identified using the classic 
reverse transcription polymerase chain reaction (RT-PCR). 
In 2011, Zheng et al. (27) described a real-time loop-
mediated isothermal amplification (RT-LAMP) assay used to 
detect the three-day fever virus. This test is more sensitive 
than isolation and identification of the virus using traditional  
RT-PCR and thus allows earlier detection of the virus.

Indirect microbiological diagnosis aims to detect neutralising 
antibodies using viral neutralisation tests or an enzyme-
linked immunosorbent assay (ELISA). The detection of 
antibodies in the second of two blood samples taken after 
an interval of two to three weeks demonstrates infection by 
the three-day fever virus. However, the existence of antigens 
in common with other lyssaviruses, such as the Kimberley 
virus, can make it difficult to interpret serological responses 
because of cross-reactions. The blocking ELISA test can 
overcome this problem because the reaction is more specific 
than viral neutralisation. It can also differentiate between 
infection with the three-day fever virus and infection with 
other similar viruses (22, 28).


background image

537

Rev. Sci. Tech. Off. Int. Epiz., 34 (2)

Treatment

There is no specific treatment for infection with the three-
day fever virus. Nevertheless, the symptoms can be treated 
and hygiene measures implemented.

Anti-inflammatories and antibiotics can be used to reduce 
the severity of the disorder, as was done in India (29). The 
intravenous administration of calcium, taking care not 
to overdose, can remedy signs of hypocalcaemia such as 
constipation, rumen atony, muscle tremors or paresis.

Hygiene measures are implemented to avoid or remedy 
situations conducive to the disease. It is important to rest 
sick animals because, if they go in search of water or food 
in a pastoral system, this could exacerbate the clinical signs 
and increase mortality. Convalescent animals must also be 
nursed to enable them to regain their health.

In Senegal, Fulani herders make febrile cattle take cold baths 
in order to lower their body temperature. Ousseynou Diouf, 
Doctor of Veterinary Medicine, treats seriously sick animals 
with antipyretics, anti-inflammatories and antibiotics, 
in particular tetracyclines, which results in a spectacular 
improvement in their condition (personal communication).

Prophylaxis

Efforts to prevent infection are based on controlling 
arthropod vectors and implementing livestock hygiene 
measures to reduce the impact of favourable conditions. 
The results are limited, especially in countries where 
livestock rearing is pastoral and vector control programmes 
are not entirely satisfactory.

In enzootic countries, strengthening the immune defences 
of susceptible organisms can offset the inadequacies of 
prophylactic measures.

Medical prophylaxis relies on active immunisation to make 
animals produce their own defences. The immunising 
component of the virus structure is the glycoprotein of the 
envelope. The vaccines used are based on the inactivated 
or attenuated whole virus. Vaccines inactivated by 
ethyleneimine and adjuvanted with aluminium hydroxide 
have given mixed results in the field. Attenuated virus 
vaccines, combined with an immunostimulant and 
administered twice at 15-day intervals have given better 
results in Australia. The conferred immunity lasts one 
year and protects against severe forms of the disease, but 
not against infection (30). Experiments with recombinant 
vaccines (insertion of the G protein gene or envelope 
glycoprotein) in an expression vector (poxvirus) have given 
promising results (31) and are therefore vaccines of the 
future.

References

 1. Schweinfurth G. (1878). – The heart of Africa. Translated 

by E.E. Frewer. Sampson Marston, Low, Searle & Rivington, 
London.

  2. Piot J.B. (1896). – Epizootic of dengue fever of cattle in Egypt. 

Prix Monbinne, Académie Nationale de Médicine, Paris, 
France.

 3. Bevan L.E.W. (1907). – Preliminary report on the so-called 

stiff-sickness or three-day-sickness of cattle. J. Comp. Path. 
Therap
.20, 104–113.

  4. Freer G.W. (1910). – Ephemeral fever or three-day sickness of 

cattle. Vet. J.66, 19–22.

  5. Van der Westhuizen B. (1967). – Studies on bovine ephemeral 

fever. I. Isolation and preliminary characterisation of a virus 
from natural and experimentally produced cases of bovine 
ephemeral fever. Onderstepoort J. Vet. Res., 34 (1)29–40.

  6.  Davies F.G. & Walker A.R. (1974). – The isolation of ephemeral 

fever virus from cattle and Culicoides midges in Kenya. Vet. 
Rec., 
95 (3)63–67.

 7. Mackerras I.M., Mackerras M.J. & Burnet F.M. (1940). – 

Experimental studies of ephemeral fever in Australian cattle. 
Bull. Counc. Scient. Ind. Res. Melb.136, 116 pp.


background image

538

Rev. Sci. Tech. Off. Int. Epiz., 34 (2)

 8. St George T.D. (1994). – Ephemeral fever. In  Diseases of 

livestock in Southern Africa (J.A.W. Coetzer, G.R. Thomson  
& R.C. Tustin, eds). Oxford University Press, Cape Town, 
553–562.

  9. St George T.D. & Standfast H.A. (1988). – Bovine ephemeral 

fever.  In The arboviruses: epidemiology and ecology, Vol. II 
(T.P. Monath, ed.). CRC Press, Boca Raton, Florida.

 10. St George T.D. (1993). – The natural history of ephemeral fever 

of cattle. In Bovine ephemeral fever and related rhabdoviruses 
(T.D. St George, M.F. Uren, P.L. Young & D. Hoffmann, eds). 
Proc. 1st International Symposium, 25–27 August 1992, 
Beijing. Australian Centre for International Agricultural 
Research (ACIAR), Proc. No. 44. ACIAR, Canberra, Australia, 
13–19.

 11. Inaba Y. (1968). – Bovine epizootic fever. Jpn Agric. Res. Q.

 3, 36–42

 12. Anderson E.C. & Rowe L.W. (1998). – The prevalence of 

antibody to the viruses of bovine virus diarrhoea, bovine herpes 
virus 1, Rift Valley fever, ephemeral fever and bluetongue and 
to Leptospira sp. in free-ranging wildlife in Zimbabwe. Epidem. 
Infect. Dis., 
121 (2), 441–449.

 13. Nandi S. & Negi B.S. (1999). – Bovine ephemeral fever: a 

review. Comp. Immunol. Microbiol. Infect. Dis.22 (2), 81–91.

 14. Momtaz H., Nejat S., Moazeni M. & Riahi M. (2012). – 

Molecular epidemiology of bovine ephemeral fever virus in 
cattle and buffaloes in Iran. Rev. Méd. Vét., 163, 8–9, 415–418.

 15. St George T.D. (1988). – Bovine ephemeral fever: a review. 

Trop. Anim. Hlth Prod., 20, 194–202.

 16. Roya S. (2008). – Survey on serological diagnosis of bovine 

ephemeral fever (BEF) by IR-BK and Vero cell lines in Southern 
provinces of Iran by in vitro methods. In Proc. 15th Congress 
of the Federation of Asian Veterinary Associations (FAVA), 
27–30 October, FAVA–OIE Joint Symposium on Emerging 
Diseases, Bangkok, Thailand.

 17. St George T.D. (1990). – Bovine ephemeral fever. In Virus 

infectious diseases of ruminants (Z. Dinter & B. Morein, eds). 
Elsevier Science Publishers, Amsterdam, 405–415.

 18. Davies S.S. Gibson D.S. & Clark K. (1984). – The effect of 

bovine ephemeral fever on milk production. Aust. Vet. J.,  
61 (4), 128–130.

 

19. Walker P.J., Byrne K.A., Cybinski D.H., Doolan D.L. & 

 

Wang Y. (1991). – Proteins of bovine ephemeral fever virus.  
J. Gen. Virol.72 (Pt 1), 67–74.

 20. Kaneko N., Inaba Y., Akashi H. & Satou K. (1986). – Isolation 

of a new bovine ephemeral fever group virus. Aust. Vet. J.,  
63 (1), 29.

 

21. Carlisher C.H., Karabatsos N., Zeller H., Digoutte J.P., 

 

Shope R.E., Travassos da Rosa A.P.A. & St George T.D. 
(1989). – Antigenic relationships among rhabdoviruses from 
vertebrates and hematophagous arthropods. Intervirology,  
30 (5), 241–257.

 22. Vorster J.H. & Mapham P.H. (2012). – Bovine ephemeral 

fever. Available at: www.cpdsolutions.co.za/publications/
article_uploads/bovine_ephemeral_fever.pdf (accessed on 
21 October 2014).

 23. St George T.D. (2012). – Bovine ephemeral fever as a model 

for antigen/antibody interaction as the basis for milk fever of 
cows. Available at: espace.library.uq.edu.au/view/UQ:292920/
TSG_3_41.pdf (accessed on 21 October 2014).

 

24. Finlaison D.S., Read A.J. & Kirkland P.D. (2010). – An 

epizootic of bovine ephemeral fever in New South Wales in 
2008 associated with long-distance dispersal of vectors. Aust. 
Vet. J
., 88 (8), 301–306.

 25. Kirkland P.D. (1993). – The epidemiology of bovine ephemeral 

fever in south-eastern Australia: evidence for a mosquito 
vector.  In Bovine ephemeral fever and related rhabdoviruses 
(T.D. St George, M.F. Uren, P.L. Young & D. Hoffmann, eds). 
Proc. 1st International Symposium, 25–27 August 1992, 
Beijing. Australian Centre for International Agricultural 
Research (ACIAR), Proc. No. 44. ACIAR, Canberra, Australia, 
33–37.

 26. Abu Elzein E.M.E., Gameel A.A., Al-Afaleq A.I., Al-Gumdi O. 

& Bukhari O. (1997). – Bovine ephemeral fever in Saudi 
Arabia. Vet. Rec., 140, 630–631.

 27. Zheng F., Lin G., Zhou J., Wang G., Cao X., Gong X. & Qiu C. 

(2011). – A reverse-transcription, loop-mediated isothermal 
amplification assay for the detection of bovine ephemeral fever 
in the blood of infected cattle. J. Virol. Meth.171 (1), 306–
309.

 

28. Kongsuwan K., Cybinski D.H., Cooper J. & Walker P.J. 

(1998). – Location of neutralizing epitopes on the G protein 
of bovine ephemeral fever rhabdovirus. J. Gen. Virol.79 (11), 
2573–2581.

 29. Li C., Gu S., Jiang S., Hao G. & Zhang T. (1993). – Studies on 

the morphology of a Chinese isolate of bovine ephemeral fever 
virus.  In  Bovine ephemeral fever and related rhabdoviruses 
(T.D. St George, M.F. Uren, P.L. Young & D. Hoffmann, eds). 
Proc. 1st International Symposium, 25–27 August 1992, 
Beijing. Australian Centre for International Agricultural 
Research (ACIAR), Proc. No. 44. ACIAR, Canberra, Australia, 
84–87.

 30. Uren M.F., Walker P.J., Zakrzewki W.H., St George T.D. & 

Byrne K.A. (1994). – Effective vaccination of cattle using 
virion G protein of bovine ephemeral fever virus as an antigen. 
Vaccine12 (9), 845–850.

 31. Hertig C., Pye A.D., Hyatt A.D., Davis S.S., McWilliam S.M., 

Heine H.G., Walker P.J. & Boyle D.B. (1996). – Vaccinia virus-
expressed bovine ephemeral fever virus G but not G(NS) 
glycoprotein induces neutralizing antibodies and protects 
against experimental infection. J. Gen. Virol., 77, 631–640.




رفعت المحاضرة من قبل: Yehia Vet
المشاهدات: لقد قام 3 أعضاء و 105 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل