background image

Akabane virus infection

P.D. Kirkland

Virology Laboratory, Elizabeth Macarthur Agriculture Institute, Woodridge Road, Menangle, NSW, Australia

E-mail: peter.kirkland@dpi.nsw.gov.au

Summary

Akabane virus is a Culicoides-borne orthobunyavirus that is teratogenic to 

the fetus of cattle and small ruminant species. Depending upon the stage of 

gestation at which infection occurs, and the length of gestation of the mammalian 

host, a range of congenital defects may be observed. The developing central 

nervous system is usually the most severely affected, with hydranencephaly 

and arthrogryposis most frequently observed. Less commonly, some strains 

of Akabane virus can cause encephalitis in the neonate or, rarely, adult cattle. 

Akabane viruses are known to be widespread in temperate and tropical regions 

of Australia, Southeast Asia, the Middle East and some African countries. Disease 

is infrequently observed in regions where this virus is endemic and the presence 

of the virus remains unrecognised in the absence of serological surveillance. In 

some Asian countries, vaccines are used to minimise the occurrence of disease. 

Keywords

Akabane virus – Arthrogryposis – Congenital defect – Culicoides – Hydranencephaly – 

Orthobunyavirus.

Rev. Sci. Tech. Off. Int. Epiz., 2015, 34 (2), 403-410

The virus

Akabane virus is an arbovirus that was first isolated in 
Japan in 1959 (1, 2). Taxonomically this virus is classified 
in the genus Orthobunyavirus in the family Bunyaviridae
Historically, Akabane virus was grouped in the Simbu 
serogroup based on serological relationships with other 
orthobunyaviruses

 

(3). This serological classification 

remains useful as it reliably describes closely related 
orthobunyaviruses and often provides an insight into their 
in vivo biological characteristics. For example, the most 
recently discovered virus in this group, Schmallenberg

 

(4), 

has a number of biological properties that are similar to those 
of Akabane virus. The term ‘Akabane disease’ has been used 
to describe the clinical syndrome resulting from in utero 
infection with Akabane virus but this can be misleading 
because some or all of the elements of the syndrome, e.g. 
congenital arthrogryposis and hydranencephaly, can be 
caused by other viruses, especially other orthobunyaviruses. 
The tripartite segmented genome of the bunyaviruses 
facilitates the development of reassortants, with segments of 
Akabane virus being found in closely related Simbu viruses 
such as Tinaroo (5), though this virus is not recognised as 
being pathogenic in nature.

Arthropod vectors

The principal vectors of Akabane virus are small biting 
midges (or gnats) belonging to the genus Culicoides (6, 7). 
Other species within this genus are vectors of bluetongue 
virus, and some species are competent vectors of both 
viruses. Multiple Culicoides species are often present in 
the same place at the same time, but while the occurrence 
of vectors of Akabane virus in a region increases the 
likelihood that there might be a competent vector(s) of 
bluetongue virus, this cannot be assumed. There is also 
a high probability that vectors of bluetongue virus will 
be competent vectors of a Simbu virus. For example, in 
Europe, following the emergence of Schmallenberg virus, 
the proven vectors of bluetongue viruses have also been 
shown to be efficient vectors of Schmallenberg virus. From 
an epidemiological perspective, an important consideration 
is the vector competence and infection rates of Culicoides 
with Akabane virus. Compared to bluetongue viruses, the 
Simbu viruses are transmitted to mammalian hosts with a 
high level of efficiency, in part due to the high virus infection 
rates detected in Culicoides and the very large number 
of insects that may attack an animal. The distribution of 
Akabane virus antibodies in cattle can be considered a 


background image

404

Rev. Sci. Tech. Off. Int. Epiz., 34 (2)

very sensitive indicator of the presence of a competent 
population of Culicoides, even if the numbers in a region 
are small. Although Akabane virus has been isolated from 
mosquitoes (1, 8), these are not considered to be true 
vectors of the virus.

Geographical and seasonal 
distribution

Akabane virus has been reported in a number of countries 
on the African continent, the Middle East, Southeast Asia 
and Australia

 

(9). It is considered likely that Akabane virus 

or other Simbu viruses are also present in neighbouring 
countries in these regions. Its presence is suspected in 
many other countries in the tropical and temperate zones, 
especially those where bluetongue is reported. Within 
a country, the distribution of the virus is absolutely 
restricted to that of the insect vector (10). In countries 
with a temperate climate, there is also a distinct seasonal 
pattern of virus transmission, coinciding with warm, moist 
summer and autumn months. This seasonal pattern is 
also a consequence of the abundance of the insect vector. 
There is a critical population density required before virus 
spread can occur. Vector numbers begin to increase in the 
late spring and early summer, usually peaking in early 
autumn. Even in tropical and subtropical regions, there is 
a tendency towards seasonal transmission, with the highest 
infection rates in the summer months. In temperate regions, 
transmission ceases with the onset of very low temperatures 
and the first frosts, while in tropical regions transmission 
rates decline with the onset of the periods of lower rainfall. 

Mammalian host range

Akabane virus infects a wide range of domesticated 
ruminants and wildlife species, especially bovids 

 

(10, 11, 12, 13). In endemic areas there is a high prevalence 
of antibodies in cattle, buffalo, sheep, goats and also horses. 
In Chinese Taipei, a high prevalence of Akabane virus 
infection has been reported in pigs held outdoors (14). 
However, it is not clear whether pigs play a role in the 
maintenance of Akabane virus in nature and no disease has 
been described. Human infection has not been reported. 
In Australia, even in areas where there is frequent virus 
transmission, infection of marsupials has not been detected. 

Pathogenesis

The onset of viraemia with Akabane virus generally occurs 
one to six days after infection and may last four to six days 

before antibodies to the virus are detected and the virus is 
cleared. Antibodies are detectable by serological tests from 
about 14 days after infection. The virus may persist for a 
considerably longer period in the developing fetus and 
clinical signs are usually not observed for months until an 
affected fetus is aborted or reaches term.

The outcome of infection of a susceptible mammalian host 
is determined almost exclusively by its age and reproductive 
status. In endemic areas, there is often annual transmission, 
and young animals become infected in their first year 
of life soon after maternally derived antibodies decline. 
Postnatal infection with most strains of Akabane virus is 
asymptomatic. 

Akabane virus is a potent teratogen and almost exclusively 
affects the developing fetus. Infection of the female during 
pregnancy can result in a range of severe fetal defects affecting 
the limbs (particularly arthrogryposis) and the central 
nervous system (CNS). These have been described in several 
reviews (9, 15, 16). Defects in the brain range from small 
cystic defects (porencephaly) to almost complete absence of 
the cerebral hemispheres, with replacement by fluid-filled 
sacs (hydranencephaly). Infection of calves around the time 
of, or soon after, birth may cause encephalitis.

The type of abnormality, and also the incidence, is influenced 
by the stage of gestation at which the dam is infected. 
Soon after being bitten by the insect, the adult develops a 
viraemia (7) and the virus crosses the placenta to infect the 
developing fetus. In most species, the impact of the virus is 
greatest in mid-gestation. There is no documented evidence 
of damage to the conceptus following infection in the very 
early stages of pregnancy (the first three weeks in sheep and 
goats; the first two months in cattle). The most susceptible 
stages of gestation in small ruminants range from 28 to 
56 days (especially 28 to 36 days) (17, 18, 19, 20, 21) and 
in cattle from three to six months (22, 23). In the latter 
stages of gestation (after 60 days in small ruminants and the 
last two months in cattle), the incidence of abnormalities 
declines to a very low level.

In cattle, the major defects involve the brain and spinal cord; 
the effects on skeletal muscle are mainly secondary, although 
a primary viral myositis sometimes occurs. The damage is 
evident mainly as hydranencephaly, porencephaly and 
arthrogryposis. In cattle, there is a successive progression 
of different defects as a result of the long gestation period 
(23). Infection of the fetus between approximately 80 and 
105 days of gestation results almost exclusively in the 
development of hydranencephaly and porencephaly. The 
lesions are markedly more severe in fetuses infected early 
on in this period and gradually decline in severity until 
abnormalities are no longer grossly apparent. Arthrogryposis 
occurs following infection between approximately 105 and 


background image

405

Rev. Sci. Tech. Off. Int. Epiz., 34 (2)

170 days of gestation. There may be a small number of calves 
born with both mild hydranencephaly and arthrogryposis 
due to infection around 100 to 120 days of gestation. Calves 
with arthrogryposis as a result of infection between 100 and 
150 days of gestation are more severely affected, with 
abnormalities involving multiple joints on several, or even 
all four, limbs. Defects are less severe following infection 
later in gestation and may involve a single joint on one limb. 
In sheep and goats, due to the shorter gestation and shorter 
period of susceptibility, there is usually a combination of 
severe defects of the limbs with gross CNS lesions (15, 17, 
19, 20, 21). In addition to lesions in the CNS, in sheep and 
goats there may be an impact on the development of other 
organs, such as pulmonary hypoplasia (21). When calves 
are infected close to term, encephalitis can occur and may 
be clinically apparent at birth (23).

Clinical signs

Although Akabane virus infects most ruminant species, 
disease outbreaks of significance are mainly seen in cattle. 
Sheep and goats are usually raised in areas where the vector 
is either absent or uncommon. Further, small ruminants are 
usually bred at the end of or after the vector season, so there 
is little risk of fetal infection. 

Akabane infection of adult animals is usually asymptomatic 
(7). Some strains of Akabane virus have been associated with 
encephalitis in newborn calves (24), but this is generally 
uncommon. The Iriki strain of Akabane virus in Japan and 
Korea has been associated with cases of encephalitis in adult 
cattle (25, 26, 27). 

The greatest impact of the virus is on the developing 
fetus. The range of defects observed will vary depending 
on herd management and the time of virus transmission. 
In year-round calving herds (such as some temperate and 
subtropical dairy herds), the full range of congenital defects 
may be seen, while in a seasonal calving herd with a very 
restricted mating period, only one type of abnormality 
may be noticed. There have been a number of detailed 
descriptions of the range of calf defects that may occur 
following infection with Akabane virus (22, 23, 28, 29, 30).  
The descriptions that follow relate to a herd with a prolonged 
(or year-round) calving period. 

The first indication of an outbreak of Akabane infection 
is abortion of abnormal fetuses at between four and 
six months of gestation. Infected fetuses may appear to 
be grossly normal but careful examination may detect 
fixation of joints. Removal of the calvarium at post-mortem 
examination will often reveal severe hydranencephaly. 

The first calves that are born during the outbreak will 
have been infected late in gestation and may show signs 

of acute encephalitis, such as flaccid paralysis of the legs, 
hyperextension of joints and difficulty in standing. 

Calves which are infected in the fifth or sixth month of 
gestation may be born with arthrogryposis and have grossly 
apparent deformities. Those infected in about the sixth 
month of gestation may have only one or two joints affected 
on a single limb, whereas calves that have been infected a 
little earlier, in the fifth month of gestation, are likely to have 
more severe lesions, involving multiple joints on all limbs 
and perhaps abnormalities of the spinal column such as 
kyphosis or lordosis. Dystokia is common in cows delivering 
these calves, most of which are stillborn. Many require 
embryotomy or Caesarian delivery. A small proportion of 
cows die as a result of obstetric complications, while others 
suffer permanent infertility. Calves with relatively mild 
lesions, involving one or two joints on a single limb, are 
usually born alive and are able to stand. 

About six weeks into the outbreak there will be few 
cases of arthrogryposis but the incidence of calves with 
hydranencephaly will increase. Those calves that do have 
arthrogryposis may also have lesions of porencephaly. 
The severity of hydranencephaly then increases during 

 

an outbreak, leading to severe hydranencephaly, with 

 

virtual absence of the cerebral hemispheres (23). Most  
calves delivered in the last four to six weeks of an outbreak 
will have severe hydranencephaly. Some are stillborn but 
many will be born alive. The lesions in the brain result in 
a range of behavioural abnormalities. These animals are 
usually blind, unaware of their surroundings and wander 
aimlessly. These defects are usually life-threatening and 
most affected animals die soon after birth if close supervision 
and care are not provided. However, due to the nature and 
severity of the abnormalities, most surviving animals are 
euthanased.

The brain stem appears to be grossly normal, even when 
there is complete absence of the cerebral hemispheres. 
In Akabane cases in cattle, the cerebellum is consistently 
intact and apparently normal. Torticollis, scoliosis, and 
brachygnathism are sometimes observed but are more 
frequent in small ruminants. 

In lambs and kids born to sheep and goats that are pregnant 
during the vector season, congenital defects can be observed 
following infection 28 to 56 days into pregnancy. However, 
at term, the chronological progression of defects observed 
in cattle is not usually apparent. Lambs and kids are likely 
to show a range of defects of both the skeletal and central 
nervous systems. Severe hydranencephaly and severe 
arthrogryposis may be seen affecting the same animal. 
Other developmental abnormalities such as pulmonary and 
thymic hypoplasia may also occur (21).


background image

406

Rev. Sci. Tech. Off. Int. Epiz., 34 (2)

The incidence of congenital abnormalities is determined 
by the stage of gestation at which the fetus is infected and 
also by the strain of virus. In cattle, the incidence of defects 
may be as high as 50% (31) if they are infected at the most 
critical stages of gestation (three to four months). If they 
are infected in the fourth month, incidence is typically 
around 25% and this declines to 5% in those infected in 
the seventh month (23). In sheep, at the most susceptible 
stages of gestation, the incidence of fetal infection can range 
from 15% to 80% depending upon the strain of virus (19). 

Epidemiology

The occurrence of Akabane disease is determined entirely 
by the distribution of the insect vector. This is strongly 
influenced by climatic conditions, especially temperature 
and, to a lesser extent, rainfall. Culicoides species typically 
have a well-defined geographical distribution (7, 10). 
Within that range, Akabane virus transmission occurs 
frequently and usually each year. Consequently, there is a 
high level of population immunity and most animals are 
immune before reaching breeding age. There is also a distinct 
seasonal pattern of spread. Within an endemic area, midge 
numbers increase during the late spring/early summer and 
peak in autumn. There is typically a lag phase between the 
first occurrence of the midge and virus transmission, which 
commences once insects become abundant. Conversely, 
there is a rapid decline in transmission with the onset of 
cold weather and a cessation with the first frost. 

Outbreaks of Akabane disease occur after environmental 
conditions that are markedly different from usual patterns. 
For example, prolonged mild moist conditions in autumn 
can result in spread of the midge well beyond its usual range 
into areas where there are large populations of susceptible 
livestock (30). Even a limited period of transmission can 
result in a significant disease outbreak. Adverse climatic 
conditions can also result in reduced midge activity and 
virus transmission within an endemic area. This results in a 
reduced level of population immunity and the opportunity 
for an increase in the number of susceptible animals that 
will reach breeding age before the next or even a subsequent 
vector season (32). Inevitably, normal transmission patterns 
return, with the concomitant birth of deformed calves 
delivered by heifers or young cows (23).

As a result of the interaction between vector and climatic 
factors, outbreaks of Akabane disease usually follow a well-
defined distribution, occurring in areas adjoining regions 
where vectors are endemic.  Exceptions to this pattern 
occur when pregnant cows are either permanently moved 
into a vector area or are held temporarily in a vector area 
and then returned to their home property (31). Because of 
the distinct seasonal pattern of virus transmission, there is 

also a clear pattern of seasonal occurrence of disease. In 
most areas where outbreaks occur, clinical cases in cattle are 
first observed in early winter and reach a peak in the early 
spring months (30). 

Pathology

Akabane infection may be suspected from the seasonal 
clustering of the birth of large numbers of calves with 
congenital defects and with highly suggestive gross 
pathology and histopathology. There may also be an 
increase in cases of neurological disease in newborn calves. 
Calves with flaccid paralysis as a result of infection late in 
gestation have histological lesions of a non-suppurative 
polio-encephalomyelitis (22, 23).

In calves with arthrogryposis, apart from the fixation or 
severely restricted range of movement of joints, there are 
few other grossly detectable changes. There are, however, 
microscopically detectable severe degenerative changes in 
the motor horns of the spinal cord (22, 23). In some cases, 
degenerative changes are also apparent in the skeletal muscle.

When calves are stillborn or show behavioural changes, 
grossly apparent defects are likely to be apparent in the 
brain. These can vary from small cystic lesions to the virtual 
absence of the cerebral hemispheres and replacement with 
fluid-filled meningeal sacs (22, 23, 30, 33). Histopathology 
on Akabane cases with severe hydranencephaly is 
unrewarding and of minimal diagnostic value. There 
will be an absence of large areas of brain surrounded by 
tissues with relatively normal architecture. In cattle, the 
cerebellum is rarely, if ever, affected, a useful differential 
feature to distinguish Akabane virus from other congenital 
infections such as bovine viral diarrhoea virus. However, 
gross cerebellar lesions may be detected in calves that have 
been infected with other orthobunyaviruses such as Aino 
and Schmallenberg.

If a fresh aborted fetus is found, depending on the age of the 
fetus and the time since it was infected, gross lesions may 
not be apparent. A range of acute, necrotic, degenerative 
changes may be detected and perhaps also a mild to 
moderate non-suppurative encephalomyelitis suggestive of 
a viral infection. The lesions can be detected in all parts of 
the CNS, with perivascular cuffing, neuronal degeneration 
and cavitation of the brain, and neuronal degeneration in 
the motor neurones of the spinal cord. Muscular dystrophy 
may also be observed. 

Diagnosis

Akabane disease should be considered when there is an 
outbreak of congenital defects in cattle, sheep or goats 


background image

407

Rev. Sci. Tech. Off. Int. Epiz., 34 (2)

commencing in the winter months and extending to 
spring. The gross pathology should provide a strong index 
of suspicion. An aetiological diagnosis and confirmation 
of Akabane infection depends on the detection of specific 
antibody in blood or fluids of fetuses and affected neonates 
that have been deprived of colostrum. Most stillborn or 
aborted fetuses and calves that are born at term mount a 
specific antibody response to the virus (28, 34). Testing can 
be carried out systematically by initially examining fetal 
fluids or pre-colostral serum to determine the IgG levels. 
An elevated IgG level will incriminate an infectious agent 
(35, 36) and Akabane virus-specific serology can then be 
undertaken. A range of serological tests have been used to 
detect antibodies to Akabane virus but virus neutralisation 
tests and enzyme-linked immunosorbent assays are most 
frequently used.

Virus detection by virus isolation (37) or polymerase chain 
reaction (PCR) (38)

 

may be considered if a fetus has been 

aborted in the early stages of pregnancy. Using real-time 
PCR, it may be possible to detect residual RNA in affected 
tissues of neonates (38). Testing of swabs taken from the 
surface of cotyledons of the placenta may also give positive 
results. Maternal serology is of value only in regions where 
the virus is not endemic. In these situations, positive 
maternal serology will raise the index of suspicion, while a 
negative result will convincingly exclude Akabane virus as 
the aetiological agent. 

Germplasm: semen and embryos

Virus has not been detected in the semen of bulls 
experimentally infected with Akabane virus (39). There is 
no evidence that Akabane virus can infect the developing 
embryo and washing techniques are considered to be a safe 
approach to ensuring that Akabane virus is not inadvertently 
transmitted by embryo transfer (40). 

Control

The impact of Akabane virus is best controlled by strategic 
vaccination of susceptible animals prior to the time of 
potential exposure to vector activity. A live attenuated 
vaccine has been used in Japan (41) and inactivated vaccines 
have been used in Australia, Japan and Korea (42, 43, 44). 
Inactivated vaccines have the advantage of being suitable for 
the emergency vaccination of pregnant animals. Alterations 
to herd or flock management, such as delaying mating or 
changing the calving period from spring to autumn, can be 
used to prevent outbreaks if there is warning of impending 
vector activity. Vector control measures, such as covering 
breeding sites and using insect repellents and insecticide 
treatments may be effective for short periods, but are 
usually ineffective in preventing fetal infection over a period 
of more than a few days. 

Infection par le virus Akabane

P.D. Kirkland

Résumé

Le virus Akabane est un orthobunyavirus transmis par les moucherons piqueurs 

du genre Culicoides  ; il est tératogène pour les fœtus de bovins, de caprins 

et d’ovins. Il peut causer un certain nombre de malformations congénitales 

dont l’apparition dépend du stade de gestation au moment de l’infection et de 

la durée de la gestation de l’espèce mammifère hôte. C’est généralement le 

système central nerveux en développement qui est le plus gravement atteint, une 

hydranencéphalie et une arthrogrypose étant les affections les plus fréquentes. De 

manière moins fréquente, certaines souches du virus Akabane sont responsables 

d’encéphalite chez le veau nouveau-né ou plus rarement chez le bovin adulte. 

Les virus Akabane sont très présents dans les régions tempérées et tropicales de 

l’Australie, de l’Asie du Sud-Est, du Moyen-Orient et de certains pays d’Afrique. 

Les maladies dues à ce virus étant rarement observées dans les régions où 

celui-ci est endémique, sa présence peut passer longtemps inaperçue si aucune 

surveillance sérologique n’est exercée. Certains pays asiatiques pratiquent la 

vaccination pour minimiser l’incidence de l’infection. 

Mots-clés

Akabane – Arthrogrypose  – Culicoides  – Hydranencéphalie – Malformation congénitale 

– Orthobunyavirus. 


background image

408

Rev. Sci. Tech. Off. Int. Epiz., 34 (2)

La infección por el virus de Akabane

P.D. Kirkland

Resumen

El virus de Akabane es un orthobunyavirus transmitido por Culicoides que tiene 

efectos teratógenos en los fetos del ganado bovino y de pequeños rumiantes. 

Dependiendo del estadio de gestación en el que se produzca la infección y de la 

duración del embarazo en el mamífero hospedador se podrán observar diversas 

anomalías congénitas. Lo que en general resulta más gravemente afectado es 

el desarrollo del sistema nervioso central, y las anomalías más comunes son la 

hidranencefalia y la artrogriposis. A veces, con menos frecuencia, algunas cepas 

del virus causan encefalitis en el vacuno neonato o, más rara vez, en el adulto. 

Se sabe que los virus de Akabane están muy extendidos en regiones templadas 

y tropicales de Australia, Asia Sudoriental, Oriente Medio y algunos países 

africanos. Resulta infrecuente observar la enfermedad en regiones donde el virus 

es endémico, por lo que en ausencia de vigilancia serológica su presencia pasa 

desapercibida. En algunos países asiáticos se utilizan vacunas para reducir al 

mínimo los casos de enfermedad. 

Palabras clave 

Akabane – Anomalía congénita – Artrogriposis – Culicoides – Hidranencefalia – 

Orthobunyavirus.

References

  1. Matsuyama T., Oya A., Ogata T., Kobayashi I., Nakamura T., 

Takahashi M. & Kitaoka M. (1960). – Isolation of arboviruses 
from mosquitoes collected at livestock pens in Gumma 
prefecture in 1959. Jpn. J. Med. Sci. Biol., 13, 191–198.

 2. Oya A., Okuno T., Ogata T., Kobayashi I. & Matsuyama T. 

(1961). – Akabane, a new arbovirus isolated in Japan. Jpn.  
J. Med. Sci. Biol
., 14, 101–108.

  3.  Kinney R.M. & Calisher C.H. (1981). – Antigenic relationships 

among Simbu serogroup (Bunyaviridae) viruses. Am. J. Trop. 
Med. Hyg
., 30, 1307–1318.

  4. Hoffmann B., Scheuch M., Höper D., Jungblut R., Holsteg M.,  

Schirrmeier H., Eschbaumer M., Goller K.V., Wernike K., 
Fischer M., Breithaupt A., Mettenleiter T.C. & Beer M. (2012). 
– Novel orthobunyavirus in cattle, Europe, 2011. Emerg. 
Infect. Dis
., 18, 469–472.

  5. Akashi H., Kaku Y., Kong X.G. & Pang H. (1997). – Antigenic 

and genetic comparisons of Japanese and Australian Simbu 
serogroup viruses: evidence for recovery of virus reassortments. 
Virus Res.50, 205–213.

 6. Kurogi H., Akiba Y., Inaba Y. & Matumoto M. (1987). – 

Isolation of Akabane virus from the biting midge Culicoides 
oxystoma
 in Japan. Vet. Microbiol., 15, 243–248.

 7. St George T.D., Standfast H.A. & Cybinski D.H. (1978). – 

Isolations of Akabane virus from sentinel cattle and Culicoides 
brevitarsis
Aust. Vet. J., 54, 558–561.

  8. Bryant J.E., Crabtree M.B., Nam V.S., Yen N.T., Duc H.M. & 

Miller B.R. (2005). – Isolation of arboviruses from mosquitoes 
collected in Northern Vietnam. Am. J. Trop. Med. Hyg.,  
73, 470–473.

  9.  St George T.D. & Standfast H.A. (1989). – Simbu group viruses 

with teratogenic potential. In The arboviruses: epidemiology 
and ecology (T.P. Monath, ed.). Vol. IV. CRC Inc., Florida, 
145–166.

 10. Cybinski D., St George T.D. & Paull N.I. (1978). – Antibodies 

to Akabane virus in Australia. Aust. Vet. J., 54, 371–373.

 

11. Al-Busaidy S.M., Hamblin C. & Taylor W.P. (1987). – 

Neutralising antibodies to Akabane virus in free-living wild 
animals in Africa. Trop. Anim. Hlth Prod., 19, 197–202.

 12. Davies F.G. & Jesset D.M. (1985). – A study of the host range 

distribution of antibody to Akabane virus (genus Bunyavirus
family Bunyaviridae) in Kenya. J. Hyg. (London)95, 191–196.

 13. St George T.D., Cybinski D.H., Filippich C. & Carley J.G. 

(1979). – The isolation of three Simbu-group viruses new to 
Australia. Aust. J. Experim. Biol. Med. Sci.57, 581–582.


background image

409

Rev. Sci. Tech. Off. Int. Epiz., 34 (2)

 

14. Huang C.-C., Huang T.-S., Deng M.-C., Jong M.-H. & 

 

Lin S.-Y. (2003). – Natural infections of pigs with Akabane 
virus. Vet. Microbiol.94, 1–11.

 15. Inaba Y. & Matumoto M. (1981). – Congenital arthrogryposis 

hydranencephaly syndrome. In Virus diseases of food animals 
(E.P.J. Gibbs, ed.). Vol. II. Academic Press, New York.

 

16. Parsonson I.M. & McPhee D.A. (1985). – Bunyavirus 

pathogenesis. Adv. Virus Res., 40, 279–316.

 17. Hashiguchi Y., Nanba K. & Kumagai T. (1979). – Congenital 

abnormalities in newborn lambs following Akabane virus 
infection in pregnant ewes. Natl Inst. Anim. Hlth Q., 19, 1–11.

 18. Narita M., Inui S. & Hashiguchi Y. (1979). – The pathogenesis 

of congenital encephalopathies in sheep experimentally 
induced by Akabane virus. J. Comp. Pathol., 89, 229–240.

 

19. 

Parsonson I.M., Della-Porta A.J., O’Halloran M.L., 

 

Snowdon W.A., Fahey K.J. & Standfast H.A. (1981). – Akabane 
virus infection in the pregnant ewe. I. Growth of virus in the 
foetus and the development of the foetal immune response. 
Vet. Microbiol.6, 197–207.

 20. Parsonson I.M., Della-Porta A.J. & Snowdon W.A. (1977). – 

Congenital abnormalities in newborn lambs after infection 
of pregnant sheep with Akabane virus. Infect. Immun.,  
15, 254–262.

 

21. 

Parsonson I.M., Della-Porta A.J., Snowdon W.A. & 

 

Murray M.D. (1975). – Congenital abnormalities in foetal 
lambs after inoculation of pregnant ewes with Akabane virus. 
Aust. Vet. J.51, 585–586.

 22. Hartley W.J., De Saram W.G., Della-Porta A.J., Snowdon W.A.  

& Shepherd N.C. (1977). – Pathology of congenital bovine 
epizootic arthrogryposis and hydranencephaly and its 
relationship to Akabane virus. Aust. Vet. J.53, 319–325.

 23. Kirkland P.D., Barry R.D., Harper P.A.W. & Zelski R.W. (1988). 

– The development of Akabane virus-induced congenital 
abnormalities in cattle. Vet. Rec.122, 582–586.

 24. Uchida K., Murakami T., Sueyoshi M., Tsuda T., Inai K., 

Acorda J.A., Yamaguchi R. & Tateyama S. (2000). – Detection 
of Akabane viral antigens in spontaneous lymphohistiocytic 
encephalomyelitis in cattle. J. Vet. Diagn. Invest., 12, 518–524.

 

25. Miyazato S., Miura Y., Hase M., Kubo M., Goto Y. & 

 

Kono Y. (1989). – Encephalitis of cattle caused by Iriki isolate, 
a new strain belonging to Akabane virus. Jpn. J. Vet. Sci.,  
51, 128–136.

 26. Lee J.K., Park J.S., Choi J.H., Park B.K., Lee B.C., Hwang W.S., 

Kim J.H., Jean Y.H., Haritani M., Yoo H.S. & Kim D.Y. (2002). 
– Encephalomyelitis associated with Akabane virus infection 
in adult cows. Vet. Pathol., 39, 269–273.

 27. Oem J.K., Yoon H.J., Kim H.R., Roh I.S., Lee K.H., Lee O.S. & 

Bae Y.C.  (2012). – Genetic and pathogenic characterization of 
Akabane viruses isolated from cattle with encephalomyelitis in 
Korea. Vet. Microbiol.158, 259–266.

 

28. Kurogi H., Inaba Y., Goto Y., Miura Y., Takahashi H., 

 

Sato K., Omori T. & Matumoto M. (1975). – Serological 
evidence for aetiologic role of Akabane virus in epizootic 
abortion-arthrogryposis-hydranencephaly in cattle in Japan, 
1972–1974. Arch. Virol., 47, 71–83.

 29. Markusfeld O. & Mayer E. (1971). – An arthrogryposis and 

hydranencephaly syndrome in calves in Israel, 1969/70. 
Epidemiological and clinical aspects. Refuah Vet., 28, 51–61.

 

30. 

Shepherd N.C., Gee C.D., Jessep T., Timmins G., 

 

Carroll S.N. & Bonner R.B. (1978). – Congenital bovine 
epizootic arthrogryposis and hydranencephaly. Aust. Vet. J.
54, 171–177.

 31. Jagoe S., Kirkland P.D. & Harper P.A.W. (1993). – An outbreak 

of Akabane virus-induced abnormalities in calves after 
agistment in an endemic region. Aust. Vet. J.70, 56–58.

 

32. Kirkland P.D., Barry R.D. & Macadam J.F. (1983). – An 

impending epidemic of bovine congenital deformities. Aust. 
Vet. J.
60, 221–223.

 33. Whittem J.H. (1957). – Congenital abnormalities in calves: 

arthrogryposis and hydranencephaly. J. Pathol. Bacteriol.,  
73, 375–287.

 34. Hartley W.J., Wanner R.A., Della-Porta A.J. & Snowdon W.A. 

(1975). – Serological evidence for the association of Akabane 
virus with epizootic bovine congenital arthrogryposis and 
hydranencephaly syndromes in New South Wales. Aust. Vet. J.
51, 103–104.

 35. Trainin Z. & Meirom R. (1973). – Calf immunoglobulins and 

congenital malformation. Res. Vet. Sci., 15, 1–7.

 36. Wanner R.A. & Husband A.J. (1974). – Immunoglobulins in 

bovine congenital hydranencephaly. Aust. Vet. J.50, 560–562.

 

37. Kurogi H., Inaba Y., Takahashi E., Sato K., Omori T., 

 

Miura Y., Goto Y., Fujiwara Y., Hatano T., Kodama K., 
Fukuyama S., Sasaki N. & Matumoto M. (1976). – Epizootic 
congenital arthrogryposis-hydranencephaly syndrome in 
cattle: isolation of Akabane virus from affected fetuses. Arch. 
Virol
., 51, 56–74.

 38. Stram Y., Kuznetzova L., Guini M., Rogel A., Meirom R.,  

Chai D., Yadin H. & Brenner J. (2004). – Detection and 
quantitation of Akabane and Aino viruses by multiplex real-
time reverse-transcriptase PCR. J. Virol. Meth., 116, 147–154.

 

39. 

Parsonson I.M., Della-Porta A.J., Snowdon W.A. 

 

& O’Halloran M.L. (1981). – Experimental infection of bulls 
with Akabane virus. Res. Vet. Sci., 31, 157–160.

 40. Singh E.L., Eaglesome M.D., Thomas F.C., Papp-Vid G. &  

Hare W.C.D. (1982). – Embryo transfer as a means of 
controlling the transmission of viral infections. I. The 
exposure of preimplantation bovine embryos to akabane, 
bluetongue and bovine viral diarrhea viruses. Theriogenology,  
17, 437–444.


background image

410

Rev. Sci. Tech. Off. Int. Epiz., 34 (2)

 41. Kurogi H., Inaba Y., Akashi Y., Takahashi E., Sato K., Satoda K., 

Sugimoto C., Hatakeyama H. & Omori T. (1979). – Immune 
response of various animals to Akabane disease live virus 
vaccine. Natl Inst. Anim. Hlth Q., 19, 23–31. 

 

42. Kirkland P.D. & Barry R.D. (1985). – The epidemiology 

and control of Akabane disease. In Veterinary viral diseases: 
their significance in South-East Asia and the Western Pacific  
(A.J. Della-Porta, ed.). Academic Press, Sydney.

 43. Kurogi H., Inaba Y., Takahashi E., Sato K., Goto Y., Satoda K., 

Omori T. & Hatakeyama H. (1978). – Development of 
inactivated vaccine for Akabane disease. Natl Inst. Anim. Hlth 
Q
., 18, 97–108.

 

44. Kim Y.H., Kweon C.H., Tark D.S., Lim S.I., Yang D.K., 

 

Hyun B.H., Song J.Y., Hur W. & Park S.C. (2011). – 
Development of inactivated trivalent vaccine for the teratogenic 
Aino, Akabane and Chuzan viruses. Biologicals39, 152–157.




رفعت المحاضرة من قبل: Yehia Vet
المشاهدات: لقد قام 4 أعضاء و 124 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل