background image

Chemical Equilibrium

Chapter 14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


background image

Equilibrium is a state in which there are no observable 
changes as time goes by.

Chemical equilibrium is achieved when:

the rates of the forward and reverse reactions are equal and 

the concentrations of the reactants and products remain 
constant

Physical equilibrium

H

2

(l)

Chemical equilibrium

N

2

O

4

(g)

14.1

H

2

(g)

2NO

2

(g)


background image

N

2

O

4

(g)

2NO

2

(g)

Start with NO

2

Start with N

2

O

4

Start with NO

2

& N

2

O

4

equilibrium

equilibrium

equilibrium

14.1


background image

14.1

constant


background image

N

2

O

4

(g)

2NO

2

(g)

= 4.63 x 10

-3

[NO

2

]

2

[N

2

O

4

]

aA + bB          cC + dD

[C]

c

[D]

d

[A]

a

[B]

b

Law of Mass Action

14.1


background image

>> 1

<< 1

Lie to the right

Favor products

Lie to the left

Favor reactants

Equilibrium Will

[C]

c

[D]

d

[A]

a

[B]

b

aA + bB          cC + dD

14.1


background image

Homogenous equilibrium applies to reactions in which all 
reacting species are in the same phase.

N

2

O

4

(g)

2NO

2

(g)

K

c

[NO

2

]

2

[N

2

O

4

]

K

p

NO

2

P

2

N

2

O

4

P

a

(g)

b

(g)

c

(g)

d

(g)

14.2

K

p

K

c

(RT)

D

n

Dn = moles of gaseous products – moles of gaseous reactants

= (d)

– (b)

In most cases

K

c

K

p


background image

Homogeneous Equilibrium

CH

3

COOH 

(aq)

+ H

2

(l)

CH

3

COO

-

(aq)

+ H

3

O

(aq)

K

c

=

[CH

3

COO

-

][H

3

O

+

]

[CH

3

COOH][H

2

O]

[H

2

O] = constant

K

c

[CH

3

COO

-

][H

3

O

+

]

[CH

3

COOH]

K

c

[H

2

O]

General practice not to include units for the 
equilibrium constant.

14.2


background image

The equilibrium concentrations for the reaction between 
carbon monoxide and molecular chlorine to form COCl

2

(g

at 74

0

C are [CO] = 0.012 M, [Cl

2

] = 0.054 M, and [COCl

2

] = 

0.14 M.  Calculate the equilibrium constants K

c

and K

p

.

CO 

(g)

+ Cl

2

(g)

COCl

2

(g)

K

c

[COCl

2

]

[CO][Cl

2

]

=

0.14

0.012 x 0.054

= 220

K

p

K

c

(RT)

D

n

D

= 1 

– 2 = -1

= 0.0821

= 273 + 74 = 347 K

K

p

= 220 x (0.0821 x 347)

-1

= 7.7

14.2


background image

The equilibrium constant K

p

for the reaction

is 158 at 1000K.  What is the equilibrium pressure of O

2

if 

the P

NO  

= 0.400 atm and P

NO

= 0.270 atm?

2

2NO

2

(g)          2NO (g) + O

2

(g)

14.2

K

p

2

P

NO 

P

O

2

P

NO

2

2

P

O2

K

p

P

NO

2

2

P

NO

2

P

O2

= 158 x (0.400)

2

/(0.270)

2

= 347 atm


background image

Heterogenous equilibrium applies to reactions in which 
reactants and products are in different phases.

CaCO

3

(s)

CaO 

(s)

+ CO

2

(g)

K

c

=

[CaO][CO

2

]

[CaCO

3

]

[CaCO

3

] = constant

[CaO] = constant

K

c

= [CO

2

] =  K

c

x

[CaCO

3

]

[CaO]

K

p

P

CO2

The concentration of solids and pure liquids are not 

included in the expression for the equilibrium constant.

14.2


background image

P

CO 2

K

p

CaCO

3

(s)

CaO 

(s)

+ CO

2

(g)

P

CO 2

does not depend on the amount of CaCO

3

or CaO

14.2


background image

Consider the following equilibrium at 295 K:

The partial pressure of each gas is 0.265 atm.  Calculate 
K

p

and K

c

for the reaction?

NH

4

HS 

(s)

NH

3

(g)

+ H

2

(g)

K

p

= P

NH

3

H

2

S

P

= 0.265 x 0.265 = 0.0702

K

p

K

c

(RT)

D

n

K

c

K

p

(RT)

-

D

n

D

= 2 

– 0 = 2

= 295 K

K

c

= 0.0702 x (0.0821 x 295)

-2

= 1.20 x 10

-4

14.2


background image

A + B          C + D

C + D          E + F

A + B          E + F

K

c

=

[C][D]

[A][B]

K

c

=

‘‘

[E][F]

[C][D]

[E][F]

[A][B]

K

c

K

c

K

c

‘‘

K

c

K

c

K

c

‘‘

K

c

x

If a reaction can be expressed as the sum of 
two or more reactions, the equilibrium 
constant for the overall reaction is given by 
the product of the equilibrium constants of 
the individual reactions.

14.2


background image

N

2

O

4

(g)

2NO

2

(g)

= 4.63 x 10

-3

[NO

2

]

2

[N

2

O

4

]

2NO

2

(g)

N

2

O

4

(g)

[N

2

O

4

]

[NO

2

]

2

=

1

K

= 216

When the equation for a reversible reaction 
is written in the opposite direction, the 
equilibrium constant becomes the reciprocal 
of the original equilibrium constant.

14.2


background image

Writing Equilibrium Constant Expressions

1. The concentrations of the reacting species in the 

condensed phase are expressed in M.  In the gaseous 
phase, the concentrations can be expressed in or in atm.

2. The concentrations of pure solids, pure liquids and solvents 

do not appear in the equilibrium constant expressions.

3. The equilibrium constant is a dimensionless quantity.

4. In quoting a value for the equilibrium constant, you must 

specify the balanced equation and the temperature.

5. If a reaction can be expressed as a sum of two or more 

reactions, the equilibrium constant for the overall reaction is 
given by the product of the equilibrium constants of the 
individual reactions.

14.2


background image

14.3

Chemical Kinetics and Chemical Equilibrium

A + 2B          AB

2

k

f

k

r

rate

f

k

f

[A][B]

2

rate

r

k

r

[AB

2

]

Equilibrium

rate

f

= rate

r

k

f

[A][B]

2

k

r

[AB

2

]

k

f

k

r

[AB

2

]

[A][B]

2

K

c

=


background image

The reaction quotient (Q

c

is calculated by substituting the 

initial concentrations of the reactants and products into the 
equilibrium constant (K

c

) expression.

IF

Q

c

K

c

system proceeds from right to left to reach equilibrium

Q

c

K

c  

the system is at equilibrium

Q

c

K

c

system proceeds from left to right to reach equilibrium 

14.4


background image

Calculating Equilibrium Concentrations

1. Express the equilibrium concentrations of all species in 

terms of the initial concentrations and a single unknown x
which represents the change in concentration.

2. Write the equilibrium constant expression in terms of the 

equilibrium concentrations.  Knowing the value of the 
equilibrium constant, solve for x.

3. Having solved for x, calculate the equilibrium 

concentrations of all species.

14.4


background image

At 1280

0

C the equilibrium constant (K

c

) for the reaction

Is 1.1 x 10

-3

.  If the initial concentrations are [Br

2

] = 0.063 

and [Br] = 0.012 M, calculate the concentrations of these 
species at equilibrium.

Br

2

(g)          2Br (g)

Br

2

(g)          2Br (g)

Let be the change in concentration of Br

2

Initial (M)

Change (M)

Equilibrium (M)

0.063

0.012

-x

+2x

0.063 - x

0.012 + 2x

[Br]

2

[Br

2

]

K

c

K

c

(0.012 + 2x)

2

0.063 - x

= 1.1 x 10

-3

Solve for x

14.4


background image

K

c

(0.012 + 2x)

2

0.063 - x

= 1.1 x 10

-3

4x

2

+ 0.048+ 0.000144 = 0.0000693 

– 0.0011x

4x

2

+ 0.0491+ 0.0000747 = 0

ax

2

bx =0

-

± b

2

– 4ac

2a

Br

2

(g)          2Br (g)

Initial (M)

Change (M)

Equilibrium (M)

0.063

0.012

-x

+2x

0.063 - x

0.012 + 2x

= -0.00178

= -0.0105

At equilibrium, [Br] = 0.012 + 2= -0.009 or 0.00844 M

At equilibrium, [Br

2

] = 0.062 

– = 0.0648 M

14.4


background image

If an external stress is applied to a system at equilibrium, the 
system adjusts in such a way that the stress is partially offset 
as the system reaches a new equilibrium position. 

Le Ch

âtelier’s Principle

• Changes in Concentration

N

2

(g)

+ 3H

2

(g)

2NH

3

(g)

Add

NH

3

Equilibrium 

shifts left to 

offset stress

14.5


background image

Le Ch

âtelier’s Principle

• Changes in Concentration continued

Change

Shifts the Equilibrium

Increase concentration of product(s)

left

Decrease concentration of product(s)

right

Decrease concentration of reactant(s)

Increase concentration of reactant(s)

right

left

14.5

aA + bB           cC + d

Add

Add

Remove

Remove


background image

Le Ch

âtelier’s Principle

• Changes in Volume and Pressure

(g)

+ B 

(g)          

(g)

Change

Shifts the Equilibrium

Increase pressure 

Side with fewest moles of gas

Decrease pressure

Side with most moles of gas

Decrease volume

Increase volume

Side with most moles of gas

Side with fewest moles of gas

14.5


background image

Le Ch

âtelier’s Principle

• Changes in Temperature

Change

Exothermic Rx

Increase temperature 

decreases

Decrease temperature

increases

Endothermic Rx

increases

decreases

14.5

colder

hotter


background image

uncatalyzed

catalyzed

14.5

Catalyst lowers E

a

for both forward and reverse reactions.

Catalyst does not change equilibrium constant or shift equilibrium.

• Adding a Catalyst

• does not change K
• does not shift the position of an equilibrium system
• system will reach equilibrium sooner

Le Ch

âtelier’s Principle


background image

Chemistry In Action

Life at High Altitudes and Hemoglobin Production

K

c

[HbO

2

]

[Hb][O

2

]

Hb (aq) + O

2

(aq)           HbO

2

(aq)


background image

Chemistry In Action: The Haber Process

N

2

(g) + 3H

2

(g)           2NH

3

(g)   

DH

0

= -92.6 kJ/mol


background image

Le Ch

âtelier’s Principle

Change

Shift Equilibrium

Change Equilibrium

Constant

Concentration

yes

no

Pressure

yes

no

Volume

yes

no

Temperature

yes

yes

Catalyst

no

no

14.5




رفعت المحاضرة من قبل: abdalla Alhamdany
المشاهدات: لقد قام عضوان و 115 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل