background image

 
 

 

Respiratory System Physiology 

Dr. Amjed Hassan  

lecture 6 

Chemical control of respiration 

The respiratory system functions to maintain proper levels of CO2 and O2 
and is very responsive to changes in the levels of these gases in body fluids

Types of chemoreceptors: Central and peripheral chemoreceptor  
Central chemoreceptors  
Located in the brain stem on the ventral surface of medulla near the point of 
exit of the glossopharyngeal and vagus nerves and only a short distance from 
the medullary inspiratory center, they communicate directly with the 
inspiratory center, they respond to changes in h+ conc. Or PCO2 , or both in 
CSF.  

 

Stimuli for central chemoreceptors  
Goal of central chemoreceptors is to keep arterial PCO2 normal, blood CO2 
has little direct effect on central chemoreceptors, main stimulus is H+ ions in 
CSF not blood H ion, blood brain barrier does not permit blood H ion, CO2 
in blood passes through blood brain barrier combines with water of CSF to 
form H2CO3, Carbonic acid in CSF dissociate into H ion and HCO3  
This H ion stimulate respiratory center. 

 

 
PERIPHERAL CHEMORECEPTORS 
 
Located outside the brain at carotid bifurcation and  arch of aorta  
They senses changes in O2, CO2 and pH  
 


background image

 
 

 

Respiratory System Physiology 

Dr. Amjed Hassan  

lecture 6 

 
 
Peripheral chemoreceptors 
 
They mainly detect changes in arterial O2 ,also respond to a lesser extent to 
changes in CO2 and pH, information perceived by chemoreceptors in turn 
transmitted to respiratory centers to regulate respiratory activity 
 
Structure of peripheral chemo receptors 
 
Carotid bodies  
Located bilaterally in bifurcation of common carotid arteries, sensations pass 
through HERING’S nerve to glossopharyngeal nerve then to DRG of 
medulla. 
  
Aortic bodies  
Located along arch of aorta , information travel to medullary DRG through 
vagus nerve, each chemoreceptor receives special blood supply. 
 

 

 
Stimulus for peripheral chemoreceptors 
(PC): 
Decrease in arterial PO2: the most common responsibility of peripheral 
chemoreceptors is to detect changes in arterial PO2.  
However PC are relatively insensitive to changes in PO2.  
They respond when PO2 decreases to less than 60mmHg  


background image

 
 

 

Respiratory System Physiology 

Dr. Amjed Hassan  

lecture 6 

If arterial PO2 is 60mmhg, the breathing rate is relatively constant.  
However, if arterial PO2 is less than 60mmhg, the breathing rate increases in 
a very steep and linear fashion.  
In this range of PO2 pc are very sensitive to O2 and they respond so rapidly 
that the firing rate of the sensory neurons may change during a single 
breathing cycle  
Increase in arterial PCO2  
The peripheral chemoreceptor also detect increases in PCO2 but the effect is 
less important than their response to decrease in PO2.  
Detection of changes in PCO2 by PC also is less important than detection of 
changes in PCO2 by central chemoreceptors 
Decrease in arterial pH 
 
Decrease in arterial pH cause an increase in ventilation, mediated by 
peripheral chemoreceptor for H+.  
effect is independent of changes in the arterial PCO2  
is mediated only by chemoreceptor in the carotid bodies (not by those in 
aortic bodies).  
In  metabolic  acidosis,  there  is  decreased  arterial  pH,  the  peripheral 
chemoreceptor  are  stimulated  directly  to  increase  the  ventilation  rate  (the 
respiratory compensation for metabolic acidosis). 
 
Other receptors that modulate respiration 
Irritant receptors 
–  There  are  receptors  in  the  walls  of  the  bronchi  that  respond  to  inhaled 
irritants  (e.g.,  dust,  pollen,  and  chemicals)  and  trigger  reflexes  such  as 
coughing and sneezing. 

Pulmonary stretch receptors 
–  There  are  a  variety  of  stretch  receptors  in  the  smooth  muscle  of  the 
bronchial  tree  that  influence  the  medullary  respiratory  center.  These 
receptors  are  responsible  for  the  Hering–Breuer  reflex,  which  exerts  an 
inhibitory  influence  as  the  lungs  inflate,  thereby  limiting  the  depth  of 
respiration. 
 
 


background image

 
 

 

Respiratory System Physiology 

Dr. Amjed Hassan  

lecture 6 

Muscle and joint receptors 
–  Muscle  and  joint  receptors  are  activated  during  exercise  and  trigger  an 
increase in ventilation. 
Response of the Respiratory System to Exercise and High Altitude 
1.Exercise 
– The onset of exercise causes a rapid initial increase in depth and frequency 
of breathing, followed by a slower secondary rise. The precise triggers for 
increased  ventilation  are  unknown  but  are  thought  to  involve  receptors  in 
activated  muscles  and  joints,  an  increase  in  body  temperature,  conscious 
awareness of exercise, and other cerebral cortical activation. 

– Ventilation is matched to increased metabolic demands of exercise (↑O2 
consumption and ↑CO2 production). 
–  During exercise,  there  is  an  increase  in  pulmonary  blood flow  due  to  an 
increase in cardiac output. 
There  is  adequate  time  for  gas  exchange  despite  this  increased  pulmonary 
blood flow. 
–  The  ventilation/perfusion  (V/Q)  ratio  progressively  increases  during 
exercise  because  ventilation  increases  more  than  cardiac  output  (and 
therefore pulmonary blood flow). The ratio may reach 4:1. 
– PO2 , PCO2 , and pH are maintained at levels of a resting person during 
light  to  moderate  cardiovascular  exercise.  At  peak  cardiovascular  exercise, 
anaerobic respiration causes lactic acid buildup in blood. This causes arterial 
pH to drop and stimulation of central chemoreceptors, leading to an increase 
in respiratory rate and subsequent decrease in Pco2. 
–  After  cessation  of  exercise,  respiratory  rate  only  gradually  returns  to 
resting values while lactic acid is metabolized. 

2.Acclimatization to high altitude:  
     In the high altitude, the human body compensates the low partial oxygen 
pressure  by  changing  ventilation  or  affinity  of  Hb  to  oxygen  or  total  Hb 
concentration.  Hyperventilation  induced  by  the  decreased  partial  oxygen 
pressure. This lowers the arterial partial carbon dioxide pressure and causes 
respiratory  alkalosis  which  cause  hyperventilation.  This  also  improves  the 
oxygenation  of  the  blood.  However,  in  spite  of  all  these  adaptation 
mechanisms,  the  partial  oxygen  pressure  in  the  arterial  blood  can  not  be 


background image

 
 

 

Respiratory System Physiology 

Dr. Amjed Hassan  

lecture 6 

increased  more  than  the  partial  oxygen  pressure  in  the  inspired  air.  As  a 
result  partial  pressure  of  oxygen  in  the  arterial  blood  decreases  with 
increasing altitude.  
    The oxygen saturation of the arterial and venous blood is 97% and 75%, 
respectively.  At  high  altitude  the  low  oxygen  content  of  red  blood  cells 
stimulates  2-DPG  production  and  decreases  the  affinity  of  Hb  to  oxygen, 
which in turn facilitates the oxygen transport to the tissues. 
Due to low oxygen partial pressure in the arterial blood at high altitude the 
tissue  hypoxia  occurs  and  in  response  the  kidneys  secrete  erythropoietin 
hormone.  Erythropoietin  stimulates  the  production  of  red  blood  cells 
resulting in polycythemia, which can cause oedema, ventricular hypertrophy 
and heart failure. 

Classification of Lung Disorders by Spirometry 
   By  comparing  recorded  values  of  the  resting  FVC  and  FEV1  and 
FEV1/FVC  ratio  obtained  from  the  spirogram  to  the  predicted  values 
obtained  from  nomograms,  it  is  possible  to  group  respiratory  diseases  or 
disorders into two broad categories of restrictive or obstructive impairments. 
Respiratory Investigations 
1- Blood pH 
2- Blood CO2 
3- Blood O2 
4- Maximum expiratory flow (400ml/min) (Peak Expiratory Flow Meter) 
5- FVC (forced vital capacity) and FEV1 (forced vital capacity in the first 
second). 
 
Abnormalities: 
1-Emphysema:
  excess  air  in  the  lungs.  Chronic  infection  causes  increase 
mucus  which  chronic  obstruction  so  air  remain  in  alveoli  that  causes 
overstretching  of  alveoli  and  alveolar  obstruction.  At  the  end,  damage  to 
alveolar  wall  causes  damage  to  capillaries  which  leads  to  pulmonary 
hypertension and right sided heart failure. 
2-Pneumonia: any inflammatory condition of the lung where the alveoli are 
filled  with  fluid  and  blood  cells.  So  in  infection,  the  damage  to  alveoli 
causes  filling  with  fluid  and  blood  forming  consolidation  and  reduction  of 


background image

 
 

 

Respiratory System Physiology 

Dr. Amjed Hassan  

lecture 6 

available  surface  and  reduction  of  VA/Q  ratio  resulting  in  hypoxemia  and 
hypercapnia. 
3- Tuberculosis = TB 
Cause: bacteria – Mycobacterium tuberculosis 
Spread:    primarily  airborne  –  aerosol,  multiple  antibiotic  resistant  strains 
have  become  a  problem,  may  occur  as  latent  of  active  infection,  it  attacks 
various tissues, most often lungs. 
 
4.Asthma: spastic contraction of smooth muscles of bronchioles because of 
hypersensitivity to normal stimuli. 




رفعت المحاضرة من قبل: Ahmed monther Aljial
المشاهدات: لقد قام 3 أعضاء و 214 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل