background image

Respiratory System PhysiologyDr. Amjed Hassan lecture 2

 

 

Compliance of the Respiratory System 

Lung Compliance 

Lung compliance expresses the dispensability of the lungs, that is, how 

easily the lungs expand when trans-pulmonary pressure increases. It is 

expressed by the following equation: 

C = ΔV/ΔP 

where 

C = lung compliance 

ΔV = increase in lung volume (mL) 

ΔP = increase in trans-pulmonary pressure (mm Hg). 

– Compliance is inversely related to stiffness. 

– Compliance is inversely related to the elastic recoil, or elastance, of the 

lung. Recoil causes the lungs to return to their previous volume when 

stretching ceases following an increase in trans-pulmonary pressure. It is 

mediated by surface tension in the alveoli and by elastic fibers in the 

lung connective tissue. 

Compliance of the Lung–Chest Wall Combination 

Because the lungs and chest wall expand and contract together, the 

overall compliance of the respiratory system is that of the lung–chest wall 

combination. The compliance of the lung–chest wall combination is 

lower than the compliance of the lungs alone or chest wall alone. 

– The compliance of the lung–chest wall combination varies with lung 

volume. Compliance is highest at the normal resting volume (functional 

residual capacity [FRC]) and decreases at both very low and very high 

volumes. 

– At low volumes, compression of the chest wall reduces compliance. 

– At high volumes, the increased stretch of elastic tissues in the lung 

parenchyma causes the lungs to get stiffer (less compliant). High trans-


background image

Respiratory System PhysiologyDr. Amjed Hassan lecture 2

 

 

pulmonary pressure is required to drive this increase in volume, but it is 

not responsible for the decrease in compliance. 

 

 

 

Changes in lung compliance in disease states 

– Lung compliance is decreased in pulmonary fibrosis because the 

interstitium surrounding the alveoli becomes infiltrated with inelastic 

collagen. 

– Lung compliance is increased in emphysema because many small 

alveoli are replaced by fewer but larger coalesced air spaces that have less 

elastic recoil. 

 

Surface Tension in the Alveoli 

Surface tension is due to the cohesive forces between water molecules at 

the air–water interface in the alveoli of lungs. It acts to contract the 

alveoli and is a major contributor to the force of elastic recoil of the lung. 

If there were no opposing force, surface tension would cause the alveoli 

to collapse (atelectasis). 

However, the collapsing force is opposed by trans-pulmonary pressure, 

which is always positive, allowing the alveoli to remain open. 

According to the law of Laplace, the trans-pulmonary pressure P (in 

dynes/cm2) required to prevent collapse of an alveolus is directly 

proportional to surface tension T (in dynes/cm), and inversely 

proportional to alveolar radius r (in cm), as expressed by 

P = 2T/r 

– All alveoli in a given region of the lungs have about the same trans-

pulmonary pressure. If they all had the same surface tension, the Laplace 


background image

Respiratory System PhysiologyDr. Amjed Hassan lecture 2

 

 

relationship predicts that the smaller alveoli would collapse and force 

their volume into larger alveoli. However, surface tension is reduced by 

pulmonary surfactant, and the reduction is greater in small alveoli than in 

larger ones because small alveoli concentrate the surfactant. Thus, the 

increased tendency to collapse because of small radius is just balanced by 

a greater reduction in surface tension. 

Surfactant 

Surfactant is a complex substance, consisting of proteins and 

phospholipids (mainly dipalmitoyl lecithin), that is produced in type II 

pneumocytes. It lines alveoli and lowers surface tension by the same 

mechanism as detergents and soaps (i.e., it coats the water surface and 

reduces cohesive 

interactions between water molecules). 

As an extension of its role in lowering surface tension, surfactant also 

produces the following effects: 

– It increases compliance at all lung volumes, which allows for easier 

lung inflation and greatly decreases the work of breathing. 

– It reduces the otherwise highly negative pressure in the interstitial 

space, which reduces the rate of filtration from pulmonary capillaries. 

This assists in maintaining lungs without excessive water. 

Failure of surfactant production and/or excessive surfactant breakdown 

occurs in neonatal respiratory distress syndrome (RDS). 

 

Effect of Alveolar Radius on the Pressure Caused by Surface 

Tension. Note from the preceding formula that the pressure generated as a 

result of surface tension in the alveoli is inversely affected by the radius 

of the alveolus, which means that the smaller the alveolus, the greater the 

alveolar pressure caused by the surface tension. Thus, when the alveoli 


background image

Respiratory System PhysiologyDr. Amjed Hassan lecture 2

 

 

have half the normal radius (50 instead of 100 micrometers), the 

pressures noted earlier are doubled. This is especially significant in small 

premature babies, many of whom have alveoli with radii less than one 

quarter that of an adult person. 

Further, surfactant does not normally begin to be secreted into the alveoli 

until between the sixth and seventh months of gestation, and in some 

cases, even later than that. Therefore, many premature babies have little 

or no surfactant in the alveoli when they are born, and their lungs have an 

extreme tendency to collapse, sometimes as great as six to eight times 

that in a normal adult person. This causes the condition called respiratory 

distress syndrome of the newborn. It is fatal if not treated with strong 

measures, especially properly applied continuous positive pressure 

breathing. 

The work of inspiration can be divided into three fractions: (1) that 

required to expand the lungs against the lung and chest elastic forces, 

called compliance work or elastic work; (2) that required to overcome the 

viscosity 

of the lung and chest wall structures, called tissue resistance work; and 

(3) that required to overcome airway resistance to movement of air into 

the lungs, called airway resistance work. 

Energy Required for Respiration. During normal quiet respiration, only 3 

to  5  per  cent  of  the  total  energy  expended  by  the  body  is  required  for 

pulmonary ventilation. But during heavy exercise, the amount of energy 

required can increase as much as 50-fold, especially if the person has any 

degree  of  increased  airway  resistance  or  decreased  pulmonary 

compliance.  Therefore,  one  of  the  major  limitations  on  the  intensity  of 

exercise that can be performed is the person’s ability to provide enough 

muscle energy for the respiratory process alone. 

 


background image

Respiratory System PhysiologyDr. Amjed Hassan lecture 2

 

 

Airflow through the Bronchial Tree 

Airflow through the bronchial tree obeys the same principles as blood 

flow through blood vessels except that the viscosity of air is much lower 

than that of blood. Airflow is related to the driving pressure and the 

resistance to flow by 

Q = ΔP/R 

where Q is airflow (mL/min), ΔP is pressure gradient between the 

mouth/nose and alveoli (cm H2O), 

and R is airway resistance (cm H2O/mL/min). 

– Airflow is directly proportional to the pressure difference between the 

mouth/nose and the alveoli and inversely proportional to airway 

resistance. 

Airway Resistance 

Resistance is derived from Poiseuille’s equation as expressed by 

R = 8ηL/πr4 

where R is airway resistance, r is radius of the airway (cm), η is viscosity 

of air, and L is length of the airway. 

– Like the circulatory system, the length of the bronchial tree is relatively 

constant, as is the viscosity of inspired air. Therefore, any changes in 

resistance to airflow are mainly due to changes in the radius of the 

airways. Because resistance is inversely proportional to the airway radius 

to the fourth power, small changes in diameter cause large changes in 

resistance. 

– The large airways offer little resistance to airflow. The small airways 

individually have high resistance, but their enormous number in parallel 

reduces their combined resistance to a small value. Therefore, the sites of 

highest resistance in the bronchial tree are normally in the medium 

airways. 


background image

Respiratory System PhysiologyDr. Amjed Hassan lecture 2

 

 

Regulation of Airway Resistance. Airway resistance is primarily 

regulated by modulation of airway radius by the parasympathetic and 

sympathetic nervous systems. 

– Parasympathetic nervous system: Vagal stimulation releases 

acetylcholine that acts on muscarinic (M3) receptors in the lungs, leading 

to bronchoconstriction. This increases the resistance to airflow. 

– Sympathetic nervous system: Postganglionic sympathetic nerves release 

norepinephrine that act on β2 receptors, leading to broncho-dilation. This 

decreases the resistance to airflow 

Lung Volumes and Capacities 

– Lung volumes are a way to functionally divide volumes of air that 

occur during different phases of the breathing cycle (Fig. 12.5). They are 

all measured by spirometry, except for residual volume. 

They vary with height, sex, and age. 

– Lung capacities are the sums of two or more lung volumes. 

– Tidal, inspiratory, and expiratory reserve volumes and inspirational and 

vital capacities are used in basic pulmonary function tests. 

Lung Volumes 

– Tidal volume (TV) is the volume of air that moves in or out of the 

lungs during one normal, resting inspiration or expiration. 

– Inspiratory reserve volume (IRV) is the volume of air that can be 

inspired beyond a normal inspiration. 

– Expiratory reserve volume (ERV) is the volume of air that can be 

expired beyond a normal expiration. 

– Residual volume (RV) is the volume of air left in the lungs and 

airways after maximal expiration. 


background image

Respiratory System PhysiologyDr. Amjed Hassan lecture 2

 

 

Table 12.1 contains the normal approximate lung volumes and expresses 

them as a percentage of total lung capacity (TLC). 

Lung Capacities 

– Inspirational capacity (IC) is the maximum volume of air that can be 

inspired with a deep breath following a normal expiration. It is the sum of 

TV and IRV. 

– Functional residual capacity (FRC) is the volume of the lungs after 

passive expiration with relaxed respiratory muscles. It is the sum of ERV 

and RV. 

– Vital capacity (VC) or forced vital capacity (FVC): is the maximum 

volume of air that can be expired in one breath after deep inspiration. It is 

the sum of TV, IRV, and ERV. 

– Total lung capacity (TLC) is the total volume of air that can be 

contained in the lungs and airways after a deep inspiration. It is the sum 

of all four lung volumes: TV, IRV, ERV, and RV. 

Note: TLC and FRC cannot be measured by spirometry because residual 

volume is needed for their calculation. 

Table 12.2 contains the normal lung capacity volumes. 

Forced Expiratory Volume (FEV1) is the volume of air that can be 

forcibly expired in the first second following a deep breath 

It is usually > 70% of the FVC (FEV1/FVC > 70%). 

– In obstructive lung disease (e.g., asthma and COPD), FEV1 

is reduced proportionally more than FVC; therefore, FEV1 /FVC < 70%. 

– In restrictive lung disease (e.g., fibrosis), both FEV1 and FVC are 

reduced. This means that FEV1 /FVC is normal or increased. 


background image

Respiratory System PhysiologyDr. Amjed Hassan lecture 2

 

 

 

Figure: old spirometry technique 

 

 

Figure: lung volumes and capacities

 

 

 

 

Dead Space 


background image

Respiratory System PhysiologyDr. Amjed Hassan lecture 2

 

 

Dead space is volume within the bronchial tree that is ventilated but does 

not participate in gas exchange. 

– Anatomical dead space is the volume of the conducting airways 

(pharynx, trachea, and bronchi) that do not contain alveoli and therefore 

cannot participate in gas exchange. It is ~150 to 200 mL. 

– Physiological dead space is the total volume of the bronchial tree that is 

ventilated but does not participate in gas exchange. 

Fig. 12.6 Volume exhaled versus time during a forced exhalation. 

The total volume exhaled is the forced vital capacity (FVC), and the 

volume exhaled in the first second is the forced expiratory volume 

(FEV1). 

– In healthy lungs, physiological dead space is approximately equal to 

anatomical dead space. 

However, physiological dead space may be increased in lung diseases 

where there are mismatches between ventilation (V) and perfusion 

(pulmonary blood flow [Q]). 

– Physiological dead space can be calculated using Bohr’s equation. 

This calculation assumes that the partial pressure of CO2 

(Paco2) in the alveoli is the same as that in systemic arterial blood. 

Ventilation Rate 

Minute ventilation refers to the total ventilation per minute. It is 

expressed as 

Minute ventilation = TV × breaths/min 

Alveolar ventilation refers to ventilation of alveoli that participate in gas 

exchange per minute. It is 

expressed as Alveolar ventilation = (TV – physiological dead space) × 

breaths/min. 

 

Distribution of Pulmonary Blood Flow 


background image

Respiratory System PhysiologyDr. Amjed Hassan lecture 2

 

10 

 

When a person is upright, the force of gravity affects the distribution of 

pulmonary blood flow within the lungs (but not the total amount of blood 

flow) because vascular pressures progressively fall at locations above the 

heart. This distribution of blood flow is described in terms of “zones” of 

the lung. 

Zone 1: Lung Apex. If pulmonary artery pressure is not high enough to 

support the column of blood 

from the right ventricle all the way to the apices of the lungs, the 

uppermost blood vessels collapse, and there is no flow in this region. This 

does not normally occur in healthy lungs but may occur if right 

ventricular pressure is extremely low (e.g., due to hemorrhage). Also, if 

alveolar pressure is 

increased to the point where it exceeds vascular pressure, blood vessels 

collapse (e.g., due to positive pressure ventilation). 

Zone 2: Middle of the Lung. In zone 2, blood flow is intermittent. 

Pulmonary artery pressure drives blood flow at its peak during systole, 

but not during the rest of the cardiac cycle. 

Zone 3: Lung Base. Zone 3 has no gravitational impediment to blood 

flow because regions located below the heart always have vascular 

pressures greater than alveolar pressure. Therefore, blood flow 

is continuous. 

 

 

 

 

Gas Exchange and Transport 


background image

Respiratory System PhysiologyDr. Amjed Hassan lecture 2

 

11 

 

Partial Pressures 

In a gas mixture, each gas species exerts a pressure, the partial pressure of 

that gas. The sum of the partial pressures of the gases in a mixture equals 

the total gas pressure. 

Partial pressure for an individual gas = the fraction of that gas in the gas 

mixture × total gas pressure Calculation of Partial Pressure of Oxygen 

(Po2) in Dry Inspired Air O2 comprises 21% of air; total gas pressure = 

760 mm Hg (at sea level) 

At high altitude, the Po2 is reduced because barometric pressure is lower. 

Correction of Po2 for the Presence of Water Vapor 

Dry air entering the lungs becomes completely saturated with water as air 

passes through moist airways. This displaces some of the other gases and 

slightly reduces their partial pressures. 

Partial pressure of water vapor (PH2o) is 47 mm Hg at body temperature. 

Total pressure of gases other than water = 760 mm Hg − 47 mm Hg 

= 713 mm Hg 

Therefore, the Po2 in warm, humidified inspired air is 

Gas Exchange 

Diffusion of Gases 

O2 and carbon dioxide (CO2 ) diffuse between alveolar gas and 

pulmonary capillary blood according to standard physical principles 

– The total amount moved per unit of time is proportional to the area 

available for diffusion and to the difference in partial pressure between 

alveolar gas and pulmonary capillary blood, and inversely proportional to 

the thickness of the diffusion barrier. 

– Gas will diffuse from the alveoli (higher partial pressures) to the 

pulmonary capillaries (lower partial pressures) until they equilibrate and 

no partial pressure gradient exists. As a result, blood entering the 


background image

Respiratory System PhysiologyDr. Amjed Hassan lecture 2

 

12 

 

pulmonary veins from the pulmonary capillaries has virtually the same 

partial 

pressures as gases in the alveoli. 

– The diffusion barrier, composed of alveolar epithelial cells (type I 

pneumocytes) and capillary endothelial cells, is very thin, which ensures 

that the diffusion distance between alveolar gas and pulmonary capillary 

blood is very short. This allows blood in the pulmonary capillaries to 

equilibrate with alveolar gas during the short time (< 1 sec) that the blood 

is in the capillaries. 

 

Figure  .  Ultra  structure  of  the  respiratory  membrane  where  diffusion 
occurs. 

 

 

 

Partial Pressure Changes of Oxygen and Carbon Dioxide 

Following Gas Exchange 

Partial Pressure Changes of Oxygen 

– The Po2 of humidified inspired air is 150 mm Hg. 

– The Po2 of alveolar air is 100 mm Hg. This is due to the diffusion of 

O2 

from alveolar air into pulmonary capillary blood. 


background image

Respiratory System PhysiologyDr. Amjed Hassan lecture 2

 

13 

 

– The Po2 of systemic arterial blood is 95 mm Hg. It is almost the same 

as the Po2 of alveolar air because the partial pressure of pulmonary 

capillary blood equilibrates with alveolar air. However, ~2% of the 

cardiac output bypasses the pulmonary circulation, which accounts for the 

slight discrepancy in partial pressures. 

– The Po2 of venous blood is 40 mm Hg because O2 has diffused from 

arterial blood into the tissues. 

 

Partial Pressure Changes of Carbon Dioxide 

– The Pco2 of humidified inspired air is almost zero. 

– The Pco2 of alveolar air is 40 mm Hg because CO2 from venous blood 

entering the pulmonary capillaries diffuses into alveolar air. 

– The Pco2 of systemic arterial blood is 40 mm Hg because pulmonary 

capillary blood equilibrates with alveolar air. 

– The Pco2 of venous blood is 46 mm Hg. It is higher than systemic 

arterial blood due to the diffusion of CO2 from the tissues into venous 

blood following cellular respiration. 

Ventilation and Perfusion Ratios for Optimum Gas Exchange 

Ventilation/perfusion ratio is the ratio of alveolar ventilation V to 

perfusion (pulmonary blood flow)Q. 

– In healthy lungs, the V/Q ratio is close to 1:1, resulting in optimum gas 

pressures and oxygenation in systemic arterial blood. 

 

Distribution of V/Q Ratios 

There are regional differences in alveolar ventilation and blood flow in 

the upright individual. 


background image

Respiratory System PhysiologyDr. Amjed Hassan lecture 2

 

14 

 

– Alveolar ventilation is higher at the base of the lungs than the apices 

because the base is more compliant and changes more in volume during 

each breathing cycle. 

– Blood flow is very low at the apex of the lung and very high at the base 

due to the effects of gravity. 

The differences in regional blood flow are greater than the differences in 

regional ventilation. This creates different V/Q ratios at various levels of 

the lung. Typical values are as follows: 

– Apex V/Q is ~3:1. 

– Middle of lungs (heart level) V/Q is ~1:1. 

– Base of lungs V/Q is ~1:2. 

 




رفعت المحاضرة من قبل: Ahmed monther Aljial
المشاهدات: لقد قام 4 أعضاء و 265 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل