background image

Clinical biochemistry  second stage   lipid lecture 2                       Dr.Thana Alsewedy 

                                             

 

 

1

Cholesterol Metabolism 

The word cholesterol is derived from Greek words, chole =bile; steros = solid; 

ol = alcohol. Almost all nucleated cells(including arterial walls) can synthesis 

cholesterol.

 Cholesterol is present in tissues and in plasma either as free 

cholesterol or as a storage form, combined with along-chain fatty acid as 

cholesteryl ester. In plasma,both forms are transported in lipoproteins .                                      

Functions of Cholesterol

 

1. Cell membranes: Cholesterol is a component of membranes and has a 

modulating effect on the fluid state of the membrane. 

2. Nerve conduction: Cholesterol has an insulating effect on nerve fibers. 

3. Bile acids and bile salts are derived from cholesterol. Bile salts are 

important for fat absorption. 

4. Steroid hormones: Glucocorticoids, androgens and estrogens are from 

cholesterol. 

5. Vitamin D3 is from 7-dehydro-cholesterol. 

6. Esterification: The OH group of cholesterol is esterified to fatty acids to 

form cholesterol esters. This esterification occurs in the body by transfer 

of a PUFA moiety by lecithin cholesterol acyl transferase 

 

 

 

                             

 Structure of cholesterol

 


background image

Clinical biochemistry  second stage   lipid lecture 2                       Dr.Thana Alsewedy 

                                             

 

 

2

Biosynthesis of Cholesterol 

  The synthesis and utilization of cholesterol must be tightly regulated in order 

to prevent over-accumulation and abnormal deposition within the body. Of 

particular importance clinically is the abnormal deposition of cholesterol and 

cholesterol-rich lipoproteins in the coronary arteries. Such deposition, 

eventually leading to atherosclerosis, is the leading contributory factor in 

diseases of the coronary arteries.

 

 

Cholesterol synthesis in microsomal (endoplasmic reticulum) and cytosol 

fraction of the cell is responsible for cholesterol synthesis from the two-carbon 

acetate group of acetyl-CoA. A little more than half the cholesterol of the body 

arises by synthesis (about 700 mg/d), and the remainder is provided by the 

average diet. 

  

The acetyl-CoA utilized for cholesterol biosynthesis is derived from an 

oxidation reaction (e.g., fatty acids or pyruvate) in the mitochondria and is 

transported to the cytoplasm by the same process as that described for 

fatty 

acid synthesis

.. All the reduction reactions of cholesterol biosynthesis use 

NADPH as a cofactor  

The process of cholesterol synthesis has five major steps: 

1. Acetyl-CoAs are converted to 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA)  

2. HMG-CoA is converted to mevalonate 

3. Mevalonate is converted to the isoprene based molecule, isopentenyl 

pyrophosphate (IPP), with the concomitant loss of CO

2

 

4. IPP is converted to squalene 

5. Squalene is converted to cholesterol. 


background image

Clinical biochemistry  second stage   lipid lecture 2                       Dr.Thana Alsewedy 

                                             

 

 

3

 

 

Pathway of cholesterol biosynthesis. Synthesis begins with the transport of acetyl-CoA 

from the mitochondrion to the cytosol. The rate limiting step occurs at the 3-hydroxy-3-

methylglutaryl-CoA (HMG-CoA) reducatase, HMGR catalyzed step. The 

phosphorylation reactions are required to solubilize the isoprene intermediates in the 

pathway.

 

 

  

Steps of synthesis are as follow   

 

Step 1: Condensation 

The acetyl CoA is provided by the ATP-citrate lyase reaction as in the case of 

fatty acid synthesis. Two molecules of acetyl CoA condense to form acetoacetyl 

CoA catalysed by cytoplasmic acetoacetyl CoA synthase

 

 

Step 2: Production of HMG CoA 

A third molecule of acetyl CoA condenses with acetoacetyl CoA to form beta-

hydroxy beta-methyl glutaryl CoA (HMG CoA). The enzyme is HMG CoA 

synthase. HMG CoA is present in both cytosol and mitochondria of liver. 

The mitochondrial pool is used for ketogenesis whereas the cytosolic 

fraction is utilized for cholesterol synthesis 

 


background image

Clinical biochemistry  second stage   lipid lecture 2                       Dr.Thana Alsewedy 

                                             

 

 

4

Step 3: The Committed Step 

The reduction of HMG CoA to mevalonate is catalysed by HMG CoA 

reductase. It is a microsomal (endoplasmic reticulum) enzyme. It uses 2 

molecules of NADPH Steps 1 and 2 are shared with ketogenic pathway; but 

step 3 is the first 

reaction that is unique to the cholesterol biosynthetic pathway. It is the rate-

limiting step.           

Step 4: Production of 5 Carbon Unit 

i. Mevalonate is successively phosphorylated to phospho-mevalonate, to 

pyrophosphomevalonate, then to 3-phospho-5-pyrophosphomevalonate. 

ii. This then undergoes decarboxylation to give isopentenyl 

pyrophosphate, a 5 carbon unit ,the over all reaction including the following 

HMG CoA is reduced to Mevalonate by a reductase. 

• Mevalonate undergoes three times Phosphorylation, in the presence of 3 

ATPs and various kinases.The product is 3- phosphor-5 pyrophospho 

mevalonate. 

• Dephosphorylation, decarboxylation converts it to Isopentenyl 

pyrophosphate. 

• It is isomerised to dimethyl allyl pyrophosphate by isomeras. 

• Isopentenyl pyrophosphate and dimethyl allyl pyrophosphate form Geranyl 

PP(10C). 

• Geranyl PP and one more molecule of Isopentenyl PP→ Farnesyl PP(15C). 

• Two of Farnesyl PP join to form Squalene (30C). 

1. Squalene undergoes cyclization, loses three carbon atoms,aquire a double 

bond,forms cholesterol 

 

Isopentenyl pyrophosphate; 5 carbon unit

 


background image

Clinical biochemistry  second stage   lipid lecture 2                       Dr.Thana Alsewedy 

                                             

 

 

5

 

Step 5: Condensation of 5-Carbon Units 

 

Thus, 6 numbers of 5- carbon units are condensed to form a 30 carbon 

compound, Squalene. In summary 

 

5C + 5C               10C;    10C+5C           15C;   15C+15C                 30C

 

 

Regulating Cholesterol Synthesis 

Normal healthy adults synthesize cholesterol at a rate of approximately 1g/day 

and consume approximately 0.3g/day. A relatively constant level of cholesterol 

in the blood (150–200 mg/dL) is maintained primarily by controlling the level of 

de novo

 synthesis. The level of cholesterol

.

 synthesis is regulated in part by the 

dietary intake of cholesterol.

 Regulation of cholesterol synthesis is exerted near 

the beginning of the pathway, at the HMG-CoA reductase step

 The enzyme is 

controlled by four distinct mechanisms:  


background image

Clinical biochemistry  second stage   lipid lecture 2                       Dr.Thana Alsewedy 

                                             

 

 

6

1-feed-back inhibition, HMG-CoA reductase in liver is inhibited by mevalonate, 

the immediate product of the pathway, and by cholesterol, the main product.

 

 

2- control of gene expressionand 

 Regulation at transcription: The 

regulatory enzyme is HMG CoA reductase. Long-term regulation involves 

regulation of transcription of the gene for HMG CoA reductase. When 

sufficient cholesterol is present in the cell, transcription of the gene for HMG 

CoA reductase is suppressed, 

and cellular synthesis of cholesterol is decreased. When cholesterol in diet is 

low, synthesis is 

3. Hormonal regulation Regulation of HMGR through covalent modification 

occurs as a result of phosphorylation and dephosphorylation HMG CoA 

reductase 

activity is controlled covalently through the actions of a protein 

kinase 

and a phosphoprotein phosphatase The phosphorylated form of the 

enzyme is inactive, whereas the dephosphorylated form is active.  

 Insulin or thyroid hormone increases HMG-CoA reductase activity,whereas 

glucagon or glucocorticoids decrease it. 

  

 

 


background image

Clinical biochemistry  second stage   lipid lecture 2                       Dr.Thana Alsewedy 

                                             

 

 

7

4-Inhibition by drugs: The statin drugs, including simvastatin, lovastatin, 

and are structural analogs of HMG CoA, and are reversible, competitive 

inhibitors of HMG CoA reductase They are used to decrease plasma 

cholesterol levels in patients with hypercholesterolemia.

 

Cholesterol Pool and Cholesterol Metabolism 

The total body cholesterol content varies from 130-150 grams. LDL (low 

density lipoprotein) transports cholesterol from the liver to the peripheral 

tissues and HDL (high density lipoprotein) transports cholesterol from tissues 

to liver. Cells of extrahepatic tissues take up cholesterol from LDL. The free 

cholesterol released within the cell has the following fates: 

1. Incorporated into cell membranes. 

2. Metabolised to steroid hormones, especially in adrenal cortex and gonads. 

3. Esterified with saturated fatty acids and stored in the cell. The enzyme 

ACAT (acyl cholesterol acyl transferase) helps in this reaction. 

4. Esterified with poly-unsaturated fatty acids (PUFA) by the action of LCAT 

(lecithin cholesterol acyl transferase) and incorporated into HDL, transported 

and finally excreted through liver.

 

DEGRADATION OF CHOLESTEROL

 

The ring structure of cholesterol cannot be metabolized and in humans. Rather, 

the intact sterol nucleus is eliminated from the body by conversion to bile acids 

and bile salts,  

FORMATION OF BILE ACIDS

 

 

Bile acids are synthesised in the liver from cholesterol. The contain 24 carbon 

atoms hydroxyl group at position 7. The reactions for synthesis of bile acids are 

summarized below:

 

1. Cholesterol hydroxylated at 3/7/12 positions The first and rate-limiting step 

is the introduction of this hydroxyl group by the enzyme 7-alpha-hydroxylase 

2. Removal of 3-carbon unit, to make it 24 C 

3. Conjugation with glycine 

4. Secretion into intestinal canal 

5. In the intestine, deconjugation and removal of hydroxyl groups. 

 


background image

Clinical biochemistry  second stage   lipid lecture 2                       Dr.Thana Alsewedy 

                                             

 

 

8

  

 

 

Formation of Bile Salts 

The primary bile acids are now conjugated with either glycine or taurine to 

form bile acids. They are glyco-cholic acid, tauro cholic acid, glyco 

chenodeoxycholic acid and tauro chenodeoxycholic 

acid (Fig. 12.20). The major conjugated bile acid is glycocholic acid. 

Conjugation adds more polar groups and increases the efficiency of bile acids 

as surfactants. The conjugated bile acids are excreted through the bile. In the 

bile they exist as bile salts (sodium or potassium salts of conjugated 

bile acids)

 

 

  


background image

Clinical biochemistry  second stage   lipid lecture 2                       Dr.Thana Alsewedy 

                                             

 

 

9

 

Functions of Bile 

1. The alkaline pH of the bile serves to neutralise the acidity of the gastric 

juice. 

2. The bile salts are efficient surfactants and detergents. 

3. Bile is the only route of excretion for bilirubin, the end product of heme 

catabolism. 

4. It serves to excrete cholesterol, thus regulating the body cholesterol pool. 

5. Bile serves as the medium of excretion for several drugs, which are 

detoxified by the liver. 

 

 

 

 

 

 

 

 

 

 

 

 


background image

Clinical biochemistry  second stage   lipid lecture 2                       Dr.Thana Alsewedy 

                                             

 

 

10

 

 

 

 

 


background image

Clinical biochemistry  second stage   lipid lecture 2                       Dr.Thana Alsewedy 

                                             

 

 

11

 

 




رفعت المحاضرة من قبل: Ahmed monther Aljial
المشاهدات: لقد قام 9 أعضاء و 175 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل