قراءة
عرض

OBJECTIVES

To understand the function of the pentose phosphate pathway in production of NADPH and ribose precursors for nucleic acid synthesis. To examine the importance of NADPH in protection of cells against highly reactive oxygen species. To relate defects in the pentose phosphate pathway to disease conditions.

HMP Shunt

Hexose Mono Phosphate Shunt = Pentose Phosphate Pathway = Complete Glucose Oxidation Function : Production of For NADPH Ribose 5P Site : In the cytoplasm of all cells except muscle, and nonlactating mammary gland (low activity)


Generation of NADPH - mainly used for reductive syntheses of fatty acids, steroids, amino acids via glutamate dehydrogenase; and production of reduced glutathione in erythrocytes and other cells. - active in liver, adipose tissue, adrenal cortex, thyroid, erythrocytes, testes, and lactating mammary gland - not active in non-lactating mammary gland and has low activity in skeletal muscle. Production of ribose residues for nucleotide and nucleic acid synthesis.

Glucose-6-phosphate dehydrogenase (G6PD) deficiency causes hemolytic anemia

Mutations present in some populations causes a deficiency in glucose 6-phosphate dehydrogenase, with consequent impairment of NADPH production. Detoxification of H2O2 is inhibited, and cellular damage results - lipid peroxidation leads to erythrocyte membrane breakdown and hemolytic anemia. Most G6PD-deficient individuals are asymptomatic - only in combination with certain environmental factors (sulfa antibiotics, herbicides, antimalarials, *divicine) do clinical manifestations occur. *toxic ingredient of fava beans


NADPH + H+ is formed from two separate reactions. The glucose 6-phosphate DH (G6PD) reaction is the rate limiting step and is essentially irreversible. Cells have a greater need for NADPH than ribose 5-phosphate.

Regulatory enzyme

The enzyme is highly specific for NADP+; the Km for NAD+ is 1000 greater than for NADP+.

The nonoxidative phase of the pentose pathway

This entails extensive carbon atom rearrangement.
Transketolase requires the coenzyme thiamine pyrophosphate (TPP), the transaldolase does not.




رفعت المحاضرة من قبل: Mohammed Altamer
المشاهدات: لقد قام 28 عضواً و 262 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل