background image

Acute Lymphoblastic Leukemia (ALL) 

Acute lymphoblastic leukaemia (ALL) is caused by an accumulation of Lymphoblasts in the bone 
marrow and is the most common malignancy of childhood. 

Incidence 

 

The incidence of ALL is highest at 3—7 years with 75% of cases occurring before the age of 6.  

There is a secondary rise after the age of 40 years.  

About  85% of cases are of B-cell lineage   

Classification 

Acute lymphoblastic leukaemia, B cell or T cell, is subclassified by WHO (2008) according to the 
underlying genetic defect.  

In B-ALL there are several specific genetic subtypes t(9; 22) or t(12; 21) translocations, 
rearrangements of the MLL gene or alteration in chromosome number (diploidy).  

In T-ALL an abnormal karyotype is found in 50—70% of cases.

 

 


background image

 

ALL Modified WHO Classification: 

 

 

 


background image

Clinical features: 

 

Bone marrow failure 

•  Anaemia (pallor, lethargy and dyspnoea); 

• 

Neutropenia (fever, malaise, features of mouth, throat, skin, respiratory, perianal or other   
infections) 

•  Thrombocytopenia (spontaneous bruises, purpura, bleeding gums and menorrhagia). 

 

Organ infiltration

 

Tender bones, lymphadenopathy, moderate splenomegaly, hepatomegaly and meningeal 
syndrome (headache, nausea and vomiting, blurring of vision and diplopia). Fundal 
examination may reveal papilloedema and sometimes haemorrhage. Many patients have a 
fever which usually resolves after starting chemotherapy. Less common manifestations 
include testicular swelling or signs of mediastinal compression in T-ALL

If lymph node or solid extranodal masses predominate with <20% blasts in the marrow the 
disease is called 

lymphoblastic lymphoma 

but is treated as ALL. 

 

 

 


background image

 

 

 

 ALL, Marked cervical LAP.        Chest X-ray of a boy aged 16 years with (T-ALL).  

                         (a) A large mediastinal (thymic mass) at presentation.  

                         (b) The mass resolved One week post therapy 

Investigations: 

CBC: Normochromic normocytic anaemia with thrombocytopenia in most cases.  

The total white cell count may be decreased, normal or increased to 200 × 109/L or more.  

The blood film typically shows a variable numbers of blast cells.  

The bone marrow is hyper-cellular with >20% leukaemic blasts.  


background image

The blast cells are characterized by 

morphology, cytochemisty, immunological tests  and 

cytogenetic analysis.

 

Identification of the immunoglobulin or T-cell receptor (TCR) gene 

rearrangement, immunophenotype and molecular genetics of the tumour cells is important to 
determine treatment and to detect minimal residual disease (MRD) during follow-up.
 

 

 

                


background image

 

Specialized tests for acute lymphoblastic leukaemia (ALL)

 

 
 

 

 

       
                 

 

 

 


background image

 

 

 

 

 

 


background image

 

 

 

 

Lumbar puncture for cerebrospinal fluid (CSF) examination is 

not generally performed as it may promote the spread of tumour 
cells to the CNS.  

 

Biochemical tests may reveal a raised serum uric acid, serum 

lactate dehydrogenase or, less commonly, hypercalcaemia.  

 

Liver and renal function tests are performed as a baseline before 

treatment begins.  

 

Radiography may reveal lytic bone lesions and a mediastinal 

mass caused by enlargement of the thymus and/or mediastinal 
lymph nodes characteristic of T-ALL. 

 


background image

Cytogenetics and molecular genetics:

 

Cytogenetic analysis shows differing frequencies of abnormalities in infants, children and adults 
which partly explains the different prognoses of these groups.  

Cases are stratified according to the number of chromosomes in the tumour cell (ploidy) or by 
specific molecular abnormalities. 

 

 

Cytogenetic subsets of (ALL) Showing the difference in incidence of cytogenic 

abnormalities between infants, children and adults 

 


background image

 

 

Hyperdiploid cells have >50 chromosomes and generally have a good 
prognosis whereas hypodiploid cases (<44 chromosomes) carry a poor 
prognosis.

  

The most common specific abnormality in 

childhood B-ALL is the t(12; 

21)(p13; q22)

 TELAML1 translocation.  

The frequency of the Philadelphia translocation t(9; 22) increases with age 
and carries a poor prog nosis

.  

T-ALL accounts for 15% of childhood and 25% of adult ALL  

Its clinical picture is often dominated by a 

very high white cell

 

count, 

mediastinal mass or pleural effusion.

 

TCR (and in 20% the IGH gene) show 

clonal rearrangement.

  

 


background image

Treatment: 

General supportive therapy 

General supportive therapy for bone marrow failure includes the insertion of a central venous 
cannula, blood product support and prevention of tumour lysis syndrome. Any episode of fever 
must be treated promptly. 

Specific therapy of ALL in children

 

 

Specific therapy of ALL is with extremely complex chemotherapy and/ or radiotherapy 
protocols  

 

There are several phases in a treatment course which usually has four components. 

 

The protocols are risk adjusted to reduce the treatment given to patients with good 
prognosis.  

 

The factors that guide treatment include age, gender and white cell count at presentation.  

 

The initial response to therapy is also important as slow clearance of blood or marrow 
blasts after a week or two of induction therapy or persistence of MRD is associated with a 
relatively high risk of relapse.  

 

ALL in infants (<1 year) has a worse clinical outcome with cure rates of only 20—50%. 

 

 


background image

 

(a) Flow chart illustrating typical treatment regimen. (b) Kaplan-Meier analyses of 
overall survival in 2628 children with newly diagnosed ALL.  
 


background image

Minimal residual disease (MDR) 

Even when the blood and bone marrow appear to be clear of leukaemia, small numbers of 
tumour cells may sometimes be detected by fluorescence activated cell sorter (FACS) analysis 
or molecular methods. A positive result indicates minimal residual disease (MRD) and the 
analysis of children for the presence of MRD at day 29 or adults at 3 months of treatment has 
prognostic significance and is being used in planning therapy 

 

 

 

MRD flow cytometry using antibodies (anti-CD10, anti-CD19, anti-CD34, anti-CD38)  

The plot shows the immunophenotype of CD19+ lymphoid cells in the samples. MRD of 0.03% of cells 

expressing the leukaemia-associated phenotype (CD10+, CD34+, CD38

) were detected confirmed by (PCR)  


background image

Remission induction: 

 

The aim of remission induction is to rapidly kill most of the tumour cells and 
get the patient into remission.  

 

This is defined as less than 5% blasts in the bone marrow, normal peripheral 
blood count and no other symptoms or signs of the disease.  

 

Dexamethasone, vinc-ristine and asparaginase are the drugs usually used 
and they are very effective – achieving remission in over 90% of children and 
in 80—90% of adults  

 

Remission is not the same as cure. In remission a patient may still be 
harbouring large numbers of tumour cells and without further chemotherapy 
virtually all patients will relapse.  

 

Nevertheless, achievement of remission is a valuable first step in the 
treatment course. Patients who fail to achieve remission need to change to a 
more intensive protocol. 

 

 

 


background image

 

Intensification (consolidation): 

These courses use high doses of multidrug chemotherapy in order to eliminate the disease or 
reduce the tumour burden to very low levels.  

Central nervous system directed therapy: 

Few systemically given drugs are able to reach the CSF and specific treatment is required to 
prevent or treat central nervous system (CNS) disease. Options are high-dose methotrexate 
given intravenously, intrathecal methotrexate or cytosine arabinoside, or cranial irradiation.  

Maintenance:

 

This is given for 2 years in girls and adults and for 3 years in boys  

The value of tests for MRD at the end of induction or during consolidation is being studied 
to reduce intensity of consolidation or maintenance therapy in those who rapidly become 
MRD negative, whereas more intensified therapy, or even stem cell transplantation (SCT), is 
given to those with persistent MRD.

  

 


background image

Prognosis 

Approximately 25% of children relapse after first-line therapy and need further treatment but 
overall 85% of children can expect to be cured. The cure rate in adults drops significantly to less 
than 5% over the age of 70 years. 

 

 




رفعت المحاضرة من قبل: zaid alkhalaf
المشاهدات: لقد قام 4 أعضاء و 83 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل