background image

 

1

 

                                  الكيمياء الحياتية

 

د

.

رعد الحمداني

 

Amino Acid Metabolism

 

 

Objectives: 

 

1.To study  Amino Acid Metabolism

 

2. Overall Nitrogen Metabolism.

 

3.Digestion & Absorption of Dietary Protein.

 

4. Removal of Nitrogen from Amino Acids.

 

5.Urea cycle and Its disorders.

 

6. Metabolism of Ammonia.

 

7. Fate & Metabolism of individual Amino Acids.

  

 
 

Introduction

 

Unlike fat and carbohydrate, Amino Acids are not stored in the 
body, Protein that exist is to maintain the supply of AA for future use.

 

 

AA. Must be supplied from the diet(Exogenous)

 

OR

 

Catabolism of normal protein……….(Endogenous).

 

What about the Excess?

  


background image

 

2

 

The excess  enter 2 Phase

 

Phase1………

 

                                     Removal of α Amino Acids

  

 

           Transamination&Oxidative deamination

 

 

    Ammonia & α Ketoacids    (Carb. Skeleton)

 

 

Portion of Amm. Excreted in the urine but  most of it used in 

synthesis of Urea.

  

 

Phase2……………

 

α Keto Acids

 

 

Common intermediate of energy producing metabolic pathway

 

 

 

Amino Acid  Pool

 

AA. Present in the body cells,blood,ECF,Essential constituents of 
protoplasm.Incorporated into cellular structure of protein,

 

 collagen, myosin, Hemoglobin & transferrin.

 

 

 3 sources of AA:

 

1

.

 

AA provided by degradation of protein(Endogenous)

 

2

.

 

AA provided by dietary protein  (Exogenous).

 

3. Synthesis of  non essential  AA.

  

Next Figure

 

 


background image

 

3

 

 

  

 

 

 

General formula 

 

 

 
 

R

CH

2

N

COOH

H

C

H

2

N

H

COO

-

R


background image

 

4

 

R= alkyl or heterocyclic group 

 

 

  

 

Peptide bond : 2 or more AA

 

Poly peptide >  10 AA

 

 

Formation of Peptide bond:

 

Formation of Peptide bond: 

 

The bond formed between two amino acid is called peptide bond.

 

When 2 A.A. are joined together di-peptide will form , if 3 A.A. are 

joined together tri-peptide will form.

 

If 2-10 A.A. are joined together oligo-peptide is formed

 

.

 

If it is more than 10 it is called poly-peptide.

 

Poly peptide are large peptide chain containing large no. of 

peptide bond less than 100 A.A. residue.

 

If the A.A. residue is more than 100 A.A. it is called protein. 

 

 

Classification    3 groups

 

 

A-non migrating neutral( mono amino – mono carboxylic )

 

 * aliphatic straight chain and branched chain 

 

   glycine , alanine ,valine 

 

*   aromatic phenyl alanine   tyrosine   tryptophan 

 

C

H

3

N

H

CO

R

NH

C

COO

-

H

R

Peptide bond

 


background image

 

5

 

*  sulfur containing AA    cysteine     cystine    methionine 

 

B-basic AA    lysine    arginine    histidine

 

 

C-Acidic AA    Aspartic A.    Glutamic A.

 

 

Imino Group(Heterocyclic AA)      Proline     Hydroxyproline

 

 

 

Nonessential

 

   Essential

 

Alanine 

 

Arginine*

 

Asparagine 

 

       Histidine *

 

Aspartate 

 

 Valine 

 

Cysteine 

 

Lysine

 

Glutamate

 

 Isoleucine 

 

Glutamine

 

       Leucine 

 

Glycine

 

 Phenylalanine 

 

Proline

 

       Methionine 

 

Serine

 

 Threonine 

 

Tyrosine

 

  Tyrptophan  

 

*The amino acids Arg, His are considered “conditionally essential”

 

 

 

Digestion Of Dietary Protein

 

 

Proteins are generally too large to be absorbed by the intestine, 

they must be hydrolysed  to give their constituent  AA  which can be 

absorbed.

 

 

Stomach                  Pancreas                           Intestine

 

 


background image

 

6

 

Stomach: the gastric juice  and the HCL PH(2-3) too dilute to 
hydrolysed, In the serus cells pepsinogen is activated to pepsin or auto 
catalytically by other pepsin molecules that have already activated. 
Pepsin  releases peptides and 

 

few AA.

  

Pancreas: large polypeptides produced in the stomach are further 
hydrolysed or cleaved into oligopeptide and AA by the action of  
pancreatic proteases, these enzymes activated by 2 hormone  
cholecystokinin and secretin 

 

Trypsinogen  activated into trypsin.

 

 

Intestine : In the intestine luminal surface contain 
aminopeptidases that repeatedly cleaves the oligopeptide to produce 
free AA and small peptide.

 

 

 


background image

 

7

 

 

 
 

Absorption

 

Free AA are taken into the intestinal cells by Na-linked secondary 
transport system. Di-and tri peptides are

 

taken up by H

+

- linked transport system. The peptide

 

are hydrolyzed in the cytosol to AA before being

 

released in to the portal system . 

 

 

Thus, only free AA are found in the portal vein after meal 
containing protein . These AA are either metabolized by the liver or 
released into the general circulation. Branched chain AA are important 


background image

 

8

 

examples of AA that are not metabolized by the liver and sent from the 
liver into the blood.

 

 

Specificity;tryp cleaves the carbonyl gp of pptide contributed by 
ar.,ly

 

 

 

Glucogenic &Ketogenic Amino Acid

 

 

Glucogenic AA: whose catabolism produce pyruvate or one of 

the intermediates of the citric acid cycle.These intermediates are 

substrate for gluconeogenesis,which can give rise to glucose or 

glycogen in the liver or glycogen in the muscles.

 

 

Ketogenic AA:  whose catabolism produce acetoacetate or one of 

its precursor acetyl coAor acetoacetyl coA.

 

Acetoacetate is one of the ketone bodies which also include B-

hydroxybutyric acid and acetone.

 

 only leucine and lysine are purely ketogenic .

 

 
 
 
 

Glucogenic &Ketogenic Amino Acid

 

 


background image

 

9

 

 

In conclusion the catabolism of the AA. Found in protein pass 

through different steps

 

1

.

 

Removal of α AA.

 

2. Break down of the resulting carbon skeleton.

 

These pathways form seven intermediate products.

 

oxaloacetate               α ketoglutarate

 

Fumarate 

                

Pyruvate

 

Succinyl CoA                  Acetyl CoA

 

Acetoacetate

 

                                           

 

by aws almola

 

 
 
 


background image

 

10

 

Biochimestry /amino acid metabolism/Dr.raad 

 

Urea Biosynthesis

 

1

.

 

1.Transamination.

 

2

.

 

2. Oxidative Deamination.

 

3

.

 

3.Ammonia Transport.

 

4

.

 

4.Urea Cycle

 

1.Transamination

 

it is the transfer of amine group (-NH2) from α amino acid to α keto 
acid  catalyzed by a group of enzymes called transaminases enzymes  
require pyridoxal phosphate  (B6) as a coenzymes .

 

 

The transfer of amine group from one carbon skeleton to another  is 
catalysed by a group of enzymes called (Aminotransferases)       
(Transaminases).

 

These enzymes are found in the cytosol and mitochondria. Of all cells 
specially liver, kidney, intestine and muscles.

 

All AA except lysine and threonine  enter in the process of 
transamination  at some point of its catabolism.

 

Only two transaminases are important:

 

1 Alanin transaminase(ALT).

 

2 Aspartate transaminase (AST). 

 


background image

 

11

 

 

1)  Alanin Aminotransferases (ALT)

 


background image

 

12

 

 It is also called (Glutamate transaminase (GPT)).

 

It is present in many tissues but it is mainly  concentrated in the liver.

 

 

It catalyze the transfer of the amino group of alanin to αketoglutarate 
,resulting in the formation of pyruvate and glutamate

 

 

 

    alanine    

-ketoglutarate       pyruvate    glutamate 

 

              

 Aminotransferase (Transaminase) 

COO

CH

2

CH

2

C

COO

O

CH

3

HC

COO

NH

3

+

COO

CH

2

CH

2

HC

COO

NH

3

+

CH

3

C

COO

O

 

 + 

 

 

Alanin transaminase(ALT)  cont.

-

 

It is a reversible reaction,but during  amino acid catabolism ,this 
enzyme functions in the direction  of glutamate synthesis ,thus 
glutamate ,in effects , acts as a collector of nitrogen from alanine.

 

It require the coenzyme pyridoxal phosphate(B6).

 

Aminotransferase act by transfering the amino group of an amino acid 
to the pyridoxal part of the coenzyme  to generate pyridoxamine 
phosphate.

 

The pyridoxamine form of the coenzyme then react with an

 

α –ketoacide to from an amino acid , at the same time 

 


background image

 

13

 

regenerating the original aldehyde form of the coenzyme

 

 

It is important for the production of non- essential amino acids  

 

depending on the requirement of the cell.

 

Its is an intracellular enzyme with the low level in the blood .

 

the presence of elevated blood level of ALT indicates damage to cells

 

rich in this enzyme .

 

It is elevated (high level in the blood )as a result of cell damage 

 

and release of intracellular enzyme into the blood seen mainly in

 

 all liver dieses but are particularly high in conditions that cause 

 

extensive cell necrosis , such as severe viral hepatitis , toxic 

 

Injury and prolonged  circulatory collapse . ALT is more specific 

 

for liver dieses  .

 

2) Aspartate aminotransferases (AST) 

 

It is called glutamate – oxaloacetate transaminase (GOT)

 

AST transfers amino groups from glutamate to oxaloacetate 

 

forming aspartate which is used as a source of nitrogen in the 

 

urea cycle.

 


background image

 

14

 

 

 

    aspartate   

-ketoglutarate   oxaloacetate   glutamate 

 

                

Aminotransferase (Transaminase) 

COO

CH

2

CH

2

C

COO

O

COO

CH

2

HC

COO

NH

3

+

COO

CH

2

CH

2

HC

COO

NH

3

+

COO

CH

2

C

COO

O

 

 

 

 

 

Aspartate donates its amino group, becoming the a-keto acid 
oxaloacetate.

 

 

a-Ketoglutarate accepts the amino group, becoming the amino 
acid glutamate.

 

 

Also require the coenzyme pyridoxine phosphate ( a derivative

 

 

 of vitamin B

6

 ) . It is also a reversible reaction the equilibrium 

 

 

Constant Is near one , allowing the reaction to function in both 

 

 

amino acid degradation throw removal of α – amino groups 

 

 

( after consumption of a protein – rich meal )

 

 

and biosynthesis through addition of amino groups to the 

 

 

carbon skeletons of α - keto acids (when the supply of amino 

 

 

acid from the diet is not adequate to meet synthetic needs of 

 

 

cells).

 

 

It is also an intracellular  enzyme with a low level found in 

 

 

Blood representing the release of cellular contents during 

 

 

normal cell turn over.

 

 

The presence of high level of blood AST indicates damage to 

 


background image

 

15

 

 

Cells rich in  this enzyme mainly the myocardium (Myocardial 

 

 

Infarction) and muscle disorders.

 

 

The amino acids undergo transamination finally  concentrate 
nitrogen in  Glutamate.

 

 

Glutamate is the only amino acid undergoes oxidative 
deamination  to liberate free NH3 for urea synthesis

 

 

2. Oxidative deamination

 

 

Is the liberation of ammonia from amino group of amino acid  
coupled with oxidation. Occurs mostly in kidney and liver, The 
purpose of this reaction is to produce NH3 for urea synthesis and 
α ketoacids  for variety of reaction(recycling)

 

 

The amino group of most of AA are ultimately funneled to 
glutamate  by means of transamination with α-ketoglutrate. by 
the action of glutamate dehydrogenase enzyme.`

 

 

Oxidative deamination: 

 

Glutamate dehydrogenase requires NAD+ or NADP+ as coenzyme. This 
is the only enzyme known that has specificity for both type of 
coenzyme

 

 


background image

 

16

 

1)Glutamate rapidly undergoes oxidative deamination  catalyzed  by 
glutamate dehydrogenase  to liberate ammonia  using NAD or NADP as 
a coenzyme

 

 

 

 

 

 

2

)

Glutamine

 

 

 

 

 

 

 


background image

 

17

 

 

 

 


background image

 

18

 

 

 

 


background image

 

19

 

 

 

Non oxidative deamination:

 

Some amino acids  can be deaminated to liberate NH4 without oxidation. 
Serine, homoserine and threonine ,

 

they undergo deamination catalysed by the enzyme  dehydratase  with 
pyridoxal phosphate as a coenzyme.

 

 


background image

 

20

 

 

 

 

 

Non Oxidative deamination

 

 

A-Dehydratase

 

B-Hydrolytic

 

 

 

C-Direct Deamination

 

 

 

3.Ammonia Transport (Metabolic Fate Of 

 


background image

 

21

 

Ammonia): (transport to the liver

Two mechanism are available for the 

transport  of ammonia

 

 from the peripheral  tissues to the liver for its ultimate 

 

conversion to urea .

 

First uses glutamine synthetase to combine ammonia with

 

 glutamate to form glutamine figure 19 - 13 . 

 

 


background image

 

22

 

 

The glutamine is transported in the blood to the liver where it is

 

 cleaved by glutaminase to produce glutamate and free

 

 ammonia .

 

second transport mechanism used by muscle involves 

 

transamination of pyruvate to form alanine. Alanine is transported  by the blood 
to the Liver , where it is converted to pyruvate again by transamination

 

 

In the liver the pathway of gluconeogenesis can use the 

 

pyruvate to Synthesize glucose , which can enter the blood 

 

and be used by muscle, a pathway called the glucose – 

 

alanine cycle .

 

 

 


background image

 

23

 

Metabolism of 

Ammonia

 

Function of Ammonia:

 

It is not a waste product of nitrogen metabolism . It is involved directly or via 
glutamine for the synthesis of many compound in the body , these include non-
essential amino acids, purines, pyrimidines aspargine. Ammonium ions are very 
important to maintain acid- base balance in the body.

 

Toxicity of ammonia:

 

Elevation of blood ammonia is toxic to the brain leads to slurred 

 

speech, blurring of vision , tremors it may lead to coma and 

 

finally death.

 

Hyperammonemia May be: 

 

A. genetic defect in urea synthesis 

 

due to a defective enzyme synthesis in any one of the five 

 


background image

 

24

 

enzymes.

 

or B. acquired.

 

 The acquired may be due to hepatitis or alcoholism where urea 

 

synthesis become defective and NH3 accumulates

 

Explanation for ammonia toxicity:

 

The reaction catalyzed by glutamate dehydrogenase may 

 

explain the toxic effect of ammonia in brain

 

 

 

 

The net result is that  production  of energy (ATP) by the brain is 

 

reduced. The toxic effect of NH3 on  brain  are therefore due to 

 

impairment in ATP production

.

 


background image

 

25

 

 

 

EDITED BY : Mohamad j Rawi

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 


background image

 

26

 

                                  الكيمياء الحياتية

 

د

.

رعد الحمداني

 

Urea Cycle

 

 

Urea is 
synthesized in the liver and transported to the kidney for excretion in urine. Urea cycle is 
the first metabolic cycle Urea synthesis is  a five steps with five distinct enzymes. The first 
two steps are mitochondrial , while the rest are localized in the cytoplasm.

 

The urea cycle: 

 

Detoxifies ammonium ion from amino acid degradation.

 

Converts ammonium ion to urea in the liver.

 

 

Provides 25-30 g urea daily for urine formation in the kidneys. 

 

First step

 

Synthesis of carbamyl phosphate by condensation of NH3 with CO2,consuming 
ATP,irreversable,  catalyzed by carbamyl phosphate synthease 

 

 

Second step

 

Formation of citrulline from CP and ornithine by the enzyme ornithine transcarbamylase . 
Ornithine and citrulline are basic amino acid. 

 

 

NH

3

+H

2

O +CO

2

+ ATP

NH

2

C

O

O PO

3

carbamyl

phosphate

+ ADP

carbamyl 
phosphate

    

synthtase


background image

 

27

 

 

Third step

 

Synthesis of argininosucinate by condensation of citrulline with aspartic acid

 

 

 

 

Fourth step

 

Cleavage of argininosuccinate by argininosuccinase enzyme into fumarte and 
arginine. Arginine is the immediate precurrsor for urea .Fumarate  provide a 
connecting link with TCA cycle.

 

 

 

 

NH

2

(CH

2

)

3

CHNH

2

COOH

CHNH

2

COOH

3

(CH

2

)

NH

C

NH

2

O

ornithine

transcarbamylase

NH

2

C
O

O

PO

3

pi

NH

C

NH

2

O

(CH

2

)

3

CHNH

2

COOH

+

COOH
CH

2

CHNH

2

COOH

argininosuccinate

ATP

ADP + pi

synthtase

CHNH

2

COOH

3

(CH

2

)

NH

C

NH

N C

H

COOH

CH

2

COOH

H

H

2

O

Citrulline 

 

 

argininosuccinate

        

 

 


background image

 

28

 

 

 

 

Fifth step

 

Formation of urea . Arginase cleaves arginine to

 

Orinithine and urea occurs almost exclusively in the liver. 

 

 

 

NH

C

NH

N C

H

COOH

CH

2

COOH

H

(CH

2

)

3

CHNH

2

COOH

CHNH

2

COOH

(CH

2

)

NH

C

NH

2

NH

COO

-

C

H

C H

-

OOC

argininosuccinase

3

NH

C

NH

2

NH

(CH

2

)

CHNH

2

COOH

NH

2

C
NH

2

O

arginase

H

2

O

CHNH

2

COOH

(CH

2

)

NH

2

3

3

+

ornithine
translocase

orinithine

carbamyl
phosphate

Urea

Argininosuccinate 

 

 

Fumarate 

 

 

Ariginine

 

Arginine

 

Cycle can be repeated 

 

 


background image

 

29

 

 

Integration between urea cycle and TCA cycle:

 

 

2 .TCA cycle is important metabolic pathways  for the 

complete oxidation of various metabolite  to CO2+H2O. The 

CO2 liberated in TCA cycle  can be utilized in urea cycle.

 


background image

 

30

 

 Fate of Urea

 

 

Urea diffuse from the liver and transported  in the blood  

to the kidney ,filtered and excreted in the urine in about 25-30 

g daily.

 

 

A portion of urea diffuse from the kidney to the intestine 

where it is cleaved to CO2+ NH3 by bacteria Urease enzyme.

 

 

This ammonia is partly lost in faeces and the remaining is 

reabsorbed into the blood..

 

 

In  Patient with kidney failure ,blood urea level elevated 

,there will be greater  shift of urea to the intestine ,due to the 

action of bacterial urease on this large amount of urea the 

intestine becomes a important source of ammonia 

contributing to hyperammonemia seen in these patients  (Oral 

Neomycin)

 

 

 

 

 

Interaction of Urea Cycle and Citric Acid Cycle via 

Aspartate-Argininosuccinate shunt 

 

 


background image

 

31

 

 

 

Regulation of the urea cycle

 

 

N-Acetylglutamate is an essential activator of carbamyl phospate 

synthetase- the rate limiting step in urea cycle. N- Acetylglutamate is 

synthesized from acetyl CoA and glutamate by N-acetylglutamate synthase in 

a reaction for which arginine is an activator.

 

 


background image

 

32

 

Therefore, the intrahepatic concentration of N-acetylglutamate increases 

after ingestion of protein rich meal ,which provides both the substrate 

(glutamate) and the regulator N-acetylglutamate synthesis,this leads to an 

increase in  rate of urea synthesis

  

 


background image

 

33

 

 

Urea Cycle Disorders 

 

5 enzymatic defects can be expected

 

1.Deficiency of carbamyl phosphate synthetase (step 1)

 

2.Deficiency of ornithine carbamyl transferase(step2)

 

Both result in ↑in blood ,urinary& hepatic ammonia

 

( ammonia intoxication)

 

Symptoms: protein induced vomiting

 

                          progressive spasiticity 

 

                           cerebral atrophy

 

    3. Deficiency of  Argininosuccinate synthetase(step 3)  Very rare                

        

 


background image

 

34

 

4.Deficiency in Argininosuccinase enzyme (Step4)                (  Most 

common)

 

 

Increase in blood and urinary levels of metabolite immediately  preceding 

the affected step

 

i.e., ↑ argininosuccinate,citrulline, ornithine 

 

Symptoms: Mental retardation, convulsion.

 

# Accumulation of argininosuccinic acid in the urine.

 

#new born baby can not tolerate milk and protein

 

#Protein loading test is helpful diagnostic test

 

# Final way of diagnosis is by liver biopsy

 

Hyperammonemia

 

 

1. Acquired                     2. Hereditary

 

 

Increase in the level of ammonia in the blood when the ammonia 

generation exceeds the capacity of urea cycle to convert it to urea.

 

 

Normal level of ammonia (5-50)μmol/L, when liver function is impaired  
level can rise up to( 1000 )μmol/L,consider as medical emergincy due to high 

toxicity of ammonia specially to the brain.

 

 

Ammonia intoxication include tremors,slured speech,vomiting,cerebral 

odema and blurring of vision.At high concentration can cause coma and death.

 

 

Acquired: 

 

 due to acute liver diseases ,viral hepatitis,ischemia,hepatotoxin,cirrhosis 

of the liver caused by alcoholism.

 

Biliary obstruction may result in the collateral circulation around the liver,  
consequently, portal  blood is shunted directly into the systemic circulation and 

dose not have access to the liver,the detoxification of ammonia to urea  is 

impaired or inhibited leading to high level of circulating ammonia in the blood.

  

 

2. Hereditary

  


background image

 

35

 

Hereditary; Genetic defects of each of five enzymes of the urea cycle can 

be the cause,ornithine transcarbamoylase deficiency is the most common of 

these disorders .

 

 

Failure to synthesize urea lead to hyper ammonemia during the Ist week 

following birth.,those who survive end with mental retardation as all other urea 

cycle disorders.

 

 

Treatment includes limiting protein in the diet and administrating 

compound that bind covalently to amino acid producing nitrogen- containing 

molecules that are excreted  in the urine

 

Phenylbutyrate given orally converted to phenylacetate.This condenses 

with glutamine to form phenylacetylglutamine which is excreted in the urine

  


background image

 

36

 

 

Clinical importance of Blood urea:

 

In healthy individual blood urea concentration is 10-40 mg/dl.

 

High protein intake marginally increase blood urea level however this is 

well with in normal range .

 

About 15-30 gram of urea is excreted in urine daily.

 

Blood urea measurement can be used  for the evaluation of renal function.

 

Elevation of blood urea can be classified into:

 


background image

 

37

 

1 pre-renal: associated with increase break down of protein observed after 

major surgery , prolonged fever ,diabetic coma,thyrotoxicosis. 

 

2 Renal: in renal disorders  acute glomerulonephritis, chronic nephritis, 

nephrosclerosis polycystic kidney.

 

3 Post renal: whenever there is an obstruction in the urinary tract , tumor , 

stones, or prostatic enlargment 

 

 
 

by aws almola

 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 


background image

 

38

 

Lec4

 

 

 

Dr.raad

 

Phenylalanine

 

 

 

Phenylalanine

 

phenylalanine (Phe), one of the essential amino acids that  cannot be manufactured by the 
body and must therefore be consumed in protein rich foods

 

Metabolism of Phenylalanine:

 

*It is one of the essential Aromatic Amino Acid.

 

*Can not be synthesized in the body.

 

*It is metabolized mainly in the liver in to two pathway:

 

1.Major pathway (Hydroxylation pathway) Tyrosine pathway)            90%

 

2.Minor pathway (Transamination pathway)       10%

 

 

1-Major pathway

 

 

 

 

CH

2

CHNH

2

COOH

CH

2

CHNH

2

COOH

OH

O

2

H

2

O

pa- hydroxylase

tetrahydro

biopterine

dihydo

biopterine

NADPH+H

NADP

biopterine
reductase

Phenylalanine

 

Tyrosine

 


background image

 

39

 

This reaction need O2 and at the same time need a cofactor (molecule of 
tetrahydrobiopterine which is converted to dihydrobiopterine by the effect of 
biopterinereductase enzyme which need molecule of NADH to convert back to 
tetrahydrobiopterine

 

2-Minor pathway

 

 

 

  

 

Inborn Error of Metabolism Of Phenylalanine

 

Phenylketonuria

 :

Deficiency of Ph. Hydroxylase enzyme

 

autosomal recessive 1/10000.

*

 

*Treatable disease with early diagnosis.

 

Late diagnosis lead to mental retardation. if diagnose after 2 weeks

 

 

 

CH

2

CHNH

2

COOH

CH

2

C
C

O

O

O

-

Transaminase

   keto
glutarate

glutamate

NAD

NADH+H

H

2

O

CO

2

NADH+H

NAD

CH

2

CH
COOH

OH

CH

2

COO

-

CH

2

C
NH

O

CH

2

COOH

CH

2

CH

2

NH

2

glutamate

Phenylalanine 

phenylpyruvate 

Phenyl 
lactate

 

 

phenyl 

acetate

 

 

phenylcaetyl

glutamine

 


background image

 

40

 

Classification:

 

Hyperphenylalaninemia I (classical)   Defect: Phenylalanine hydroxylase.

 

Hyperphenylalaninemia II ,III (minority)Defect:Dihydrobiopterinereductase enzyme.

 

Hyperphenylalaninemia   IV,V                 Defect: Synthesis of biopterine cofactor

 

 

Phenylketonuria (PKU)

 

A disorder of the metabolism of phenylalanine, a substance present in milk and also in 
products containing aspartame (NutraSweet). 

 

Phenylalanine is not metabolized by the body it accumulates in the blood and reaches 
toxic levels, damaging various body structures, including the brain. 

 

PKU is largely preventable, and testing for PKU in newborns is required

 

 

The normal metabolism of phenylalanine 

 

(pathways a and b)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dietry sources, 

particularly plant 

proteins

 

 

PHENYLALANINE

 

TYROSINE

 

 

BREAKDOWN

 

 

BODY PROTEINS

 

 

PHENYLALANIN

E HYDROXYLASE

 

 

A

 

B

 


background image

 

41

 

 

 

The abnormal metabolism in phenylketonuric(pathway c)subjects

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*

Agents, thought to be responsible for mental retardation

 

 

 

 

 

 

 

 

 

 

Dietry sources, 

particularly plant 

proteins

 

 

Hydroxyphenylacetic Acid

 

 

PHENYLALANINE

*

 

 

PHENYLACETIC ACID

*

 

 

BODY PROTEINS

 

 

PHENYLALANINE 

HYDROXYLASE

 

 

A

 

B

 

C

 

D

 


background image

 

42

 

Phenylketonuria (PKU)

 

The PKU gene is found on the chromosome 12, locus 24.1 in the phenylalanine hydroxylase 
gene 

 

 

Punnett Square

 

The punnet square below shows the results of when two parents, both carriers of PKU 
produce offspring.

 

 

 

  

 

 

Carriers of Phenylketonuria. Both Gg.

 

 

 

 

 

 

 

 

 

GG 

Gg 

Gg 

gg 


background image

 

43

 

 

Phenylketonuria (PKU)

 

Clinical Features:

  

**Irritability, feeding problem,vomiting.fits during the first week of life

 

**Mental retardation developing between 4-6 months.

 

**Generalized Eczema.

 

**Tendency to reduce melanin formation because of reduced production of tyrosine . Blue eyes.

 

** Deficiency of pigmentation (,fair hair,light skin colour)

 .

 

Biochemical Effects

 

1-Accumulation of substrate of blocked reaction.     Phenylalanine 

2-Reduced formation of the product.                           Tyrosine

 

3-Alternative pathways of metabolism of the precursor,(formation & excretion of 
phenylpyruvate, phenyllactate&phenylacetate).

 

4-The mental retardation of PKU can be prevented by a diet containing low level of 
phenylalanine up to six year 

 

 

Phenylketonuria (PKU) 

Neonatal Screening 

Early diagnosis of PKU is important because  the disease is treatable by diet. However the 
infant has normal blood level of phenylalanine at birth because the mother clears increased 
blood phenylalanine in her affected fetus  through the placenta, 

Normal level of phenylalanine my persist  until the new born is exposed to 24-48 hr protein  
feeding.Screenig should be done after this time  to avoid false negative. 

Positive rsult by quantitatve measurement of phenylalanine

. 

 

 

 


background image

 

44

 

Diagnosis:

Measurement of phenylalanine in blood taken from a heel prick. 

1-Amino Acid Analysis        High peak level of Phenylalanine and Low level of Tyrosine. 

2-Guthrie Test:   

3-Ferric Chloride Test: 

4-Urine Chromatography. 

Amino Acid analysis

in the blood is the most important method which give high peak of 

phenylalanine&low peak of Tyrosine The advantage  of this method is the early diagnosis.

 

 

 

It is only suitable for mass screening.

 

** Should be performed about 4 days after birth.

 

      False positive……. Premature infant

 

Ferric Chloride Test:

Pink or green ring

 

Management: 

1-To lower plasma phenylalanine ,give low phenylalanine diet special milk formula). 

2-Supplementation with tyrosine. 

3-Diet may be terminated at age of 6 years. 

4-The earlier  treatment  is started ,the  more completely  neurological damage can be 
prevented 

5-Tyrosine can  not be synthesized from phenylalanine  and it becomes an essential  
amio acid and should be supplied in the diet. 

 

PKU Treatment 

Meat, fish, eggs, cheese, milk products,, and bread are all foods that have high levels of 
phenylalanine 

 

 

 

 

 

 


background image

 

45

 

Lec5 

 

Dr.raad

 

Tyrosine

 

Tyrosine is a non essential Amino Acid synthesized from hydroxylation of phenylalanine by the 
phenylalanine hydroxylase

 

 

 

 

 

Metabolism of Tyrosine was divided into 2 parts:

 

1. Transamination Pathway.

 

2. Synthesis of specialized products.

 

        A- Thyroid Hormones   T3. T4.

 

         B- Adrenalin & nor adrenalin.

 

         C-Melanin pigment of the skin

 

 

 

 

CH

2

CH
COOH

NH

2

CH

2

CH
COOH

NH

2

OH

     O

2

tetra
hydro

NAD

NADH H

+

+

dihydro

pa-hydroxylase

phenylalanine 

Tyrosine 


background image

 

46

 

 

 

1-Transamination of Tyrosine

 

 

 

 

 

 

 

The end result of tyrosine metabolism are

 

1.Fumarate ………….   Citric Acid cycle

 

2.Acetoacetate& Acetate……………..Fatty Acid Synthesis

 

Tyrosine is both glucogenic&Ketogenic

 

FumarateGlucogenic

 

Acetoacetate           Ketogenic

 

Tyrosine

para hydroxy phenyl pyruvate

KG

glutamate

tyrosine -   keto
   transferase

CO

3

CO

2

Cu

++

vit. C

Hemogentisate

CO

3

CO

2

Fe

++

Hemogentisate

Maleyl acetoacetate

Glutathione

   Maleyl acetate
cis trans isomerase

Fumaryl acetoacetate

H

2

O

Fumaryl acetate
    hydroxylase

Fumarate

Acetoacetate

CoA SH

Acetyl CoA +acetate

TCA

B-Ketothiolase

Schematic 
presentation of 
Tyrosine Metabolism 

parahydroxyphenylpyruvate 

hydroxylase

 

 

oxidase

 


background image

 

47

 

Inborn Error diseases of Tyrosine (Metabolic disorders) 

1-Type 2 Tyrosinemia 

2-Neonatal Tyrosinemia 

3-Alkapotoneuria 

4-Type 1 Tyrosinemia 

Type 2 Tyrosinemia

 

Deficiency of tyrosine transaminase.

*

 

* mild to severe keratitis.erosive lesion of the palm,, 

 

*Skin lesions, hyperkeratosis of the palm and the hand.

 

*Mental retardation.

 

* High level of tyrosine in the blood.

 

* harmful untreatable disease.

 

Neonatal Tyrosinemia

 

*Deficiency of parahydroxyphenyl pyruvate hydroxylase.

 

* Accumulation of parahydroxyphenyl pyruvic acid (Toxic).

 

*Hepatosplenomegally.

 

*Harmful untreatable    Death before the age of 6 months

 

Alkaptonuria

 

* Autosomal recessive.

 

*Deficiency of homogentisic acid oxidase.

 

*Increase homogentisic acid in blood and urine.

 

*Homogentisic acid on standing become black pigment. .(Alkapotonuria)

 

*It may be precipitate in the cartilage specially in the ear.

 

*Harmless.

 

*Diagnosis: Black color urine.

 

*Ferric chloride test is positive.

 

 


background image

 

48

 

Type1 Tyrosinemia (Tyrosinosis)

 

*Acute form lead to vomiting&diarrhoea.

 

*Failure to thrive.

 

*Deficiency of Fumaryl acetate hydroxylase.

 

*Mostly die before age of 6-8 months (Acute form).

 

*Death due to liver failure.

 

*Chronic form similar but milder ,death usually  before age of 10 Years.

 

*Example of harmful untreatable diseases.

 

 

Metabolism of tyrosine in melanocyte(skin)

 

 

 

 

 

Metabolism of Tyrosine in the melanocyte(Skin)

 

1.Hydroxylation of tyrosine by tyrosinase enzyme to form dihydroxyphenylalanine(L-Dopa).

 

2. Dihydroxyphenylalanine is converted to Dopaquinone.

 

3.Dopaquinone is converted to melanin pigment.

 

Tyrosine

PHPPA

CO

2

UV
Tyrosinase

Tyrosine
transamine

dihydroxy phenylalanine

(L-Dopa)

CO

2

dopamine

  epinephrine
norepinephrine

Tyramine

Dopaquinone

Melanin

Skin,Hair,
Adrenal Medulla
Choroid(Retina)

Schematic presentation of 
Tyrosine metabolism  in the skin 


background image

 

49

 

4. L-Dopa is decarboxylated in the brain to form Dopamine.( epinephrine and nor epinephrine.)

 

5.Dopamine is deficient in brain patient with parkinsonism.

 

6.Minor pathway is that tyrosine is decarboxylated to form tyramine a vasopressor agent.

 

 

Inborn Error (Metabolic disease)of Tyrosine in the skin.

 

Albinism.

 

* Deficiency of tyrosinase enzyme of melanocytes.

 

*Failure of melanocyte to form melanin pigments.

 

*Whitish skin, Whitish eye lashes, whitish hair

 

*Intolerance to sunlight.

 

*Harmless condition.

 

 

Parkinson disease is linked with decrease  production of dopamine .The disease is due to 
degeneration  of certain part of the brain leading to impairment synthesis of dopamine.

 

Treatment: dopamine can not enter the brain hence its administration is of no use.

 

L- dopa or levodopa  is used in the treatment  of Parkinson . In the brain DOPA is decarboxylated to 
dopamine  which alleviates the symptoms  but dopamine synthesis occurs in various tissue causing 
side effect, such as nausea, vomiting hypertension 

 

Sinemet contain L=Dopa 250mg and carbidopa 25mg  act as peripheral decarboxylase inhibitor  to 
prevent decarboxylation in various tissue and decrease the side effect

 


background image

 

50

 

 

 

 

 

 


background image

 

51

 

Lec6

 

Dr.raad

 

Tryptophan

 

Tryptophan Metabolism

 

It is an essential Amino Acid containing indole ring metabolized mainly in two pathways

 

1.Major pathway  Kynurenine pathway       90%

 

 2. Minor Pathway Serotonin pathway           10%

 

                                     Melatonin pathway         

 

The major pathway occurs in the liver and the main metabolic  final product is Nicotinic 
Acid Niacin) (B-Complex) require vit.B6 as a cofactor.

 

It has been estimated that  60 mg of tryptophan in 

 

food protein is converted to 1mg of nicotinic acid inhuman

 

 

 

 

 

 

N
H

CH

2

CH
NH

2

COOH

N

COOH

Tryptophan 
hydroxylase

Nicotinic Acid

Tryptophan


background image

 

52

 

 

 

 

 

 

 

 

 

 

 

 

 

Serotonin pathway(Minor)

 

 

Tryptophane

Fe

O

2

Formyl Kynurenine

Kynurenine

Kynurenic acid

Tryptophan
oxygenase

Kynurenine
 formylase

Kynurenine
hydroxylase

O

2

Riboflavin

3-hydroxy
Kynurenine

Xanthurinic 
      acid

3-hydroxy
anthranilic
    acid

Nicotonic
   acid

NAD+NADH

acetoacetyl CoA

acetyl CoA

CO

2

+H

2

O

Kynureninase

CO

2

Tryptophan Metabolism 

Kynurenine pathway (major 90%) 

B6

 


background image

 

53

 

 

 

 

Ist step in minor pathway is hydroxylation of tryphtophan To 5 hydroxy tryptophan.

 

Tryphtophan is further decarboxylated into 5hydroxytryptamin  5HT.

 

5HT is a potent vasoconstrictor and regarded as neurotransmitter.

 

5HT  is converted by MAO into 5HIAA

 

Another minor pathway is  Melatonin Pathway

 

This pathway of tryptophan  metabolism occur in pineal body  by N acetylating process 
using the enzyme acetylase  to convert tryphtophan into melatonin  which is regarded as 
neurotransmitter.

 

 

The final end product of Tryptophan are

 

1. Nicotinic Acid.

 

  2. Serotonin.

 

  3. Melatonin

 

Tryptophan

5-hydroxy tryptophan

O

2

Tryptophan
hydroxylase

H

2

O

CO

2

  Tryptophan
decarboxylase

  5-hydroxy
  tryptamine
(serotonin)

MHO

   5HIAA
5-hydroxy
indol acetic acid

urine

acetylase

Melatonin

MAO

 


background image

 

54

 

Melatonin synthesis and secretion  from pineal gland is controlled by light.

 

It involves in circadian rhythm or diurnal variation (24hrs cyclic process) ,it play a significant 
role in sleep and wake process.

 

 

It performs   a neurotransmitter function

 

 

Melatonin is derived from serotonin within the pineal gland and the retina, where the 
necessary N-acetyltransferase enzyme is found.

 

 

The pineal parenchymal cells secrete melatonin into the blood and cerebrospinal fluid. 
Synthesis and secretion of melatonin increases during the dark period of the day and is 
maintained at a low level during daylight hours

 

 

This diurnal variation in melatonin synthesis is brought about by norepinephrine secreted 
by the postganglionic sympathetic nerves that innervate the pineal gland.

 

 This leads to increased levels of cAMP, which in turn activate the N-cetyltransferase 
required for melatonin synthesis.

 

 Melatonin functions by inhibiting the synthesis and secretion of other neurotransmitters 
such as dopamine and GABA

 

Disorders of Tryptophan Metabolism (Metabolic  diseases of Tryptophan)

 

Hartnup Disease:

 

* It is autosomal recessive inherited disease.

 

*

The defect is in the cellular transport of tryptophan &failure of its absorption.

 

*Defective intestinal absorption with defective reabsorption in the kidney.

 

*The above defect results in increase excretion of tryptophan and indole derivatives in urine.

 

* The above defect results in low level of blood Tryptophan.

 

*Low level of Tryptophan in blood lead to defective production of nicotinic acid (niacin) through 
the kynurenine pathway ( major pathway).

 


background image

 

55

 

*Defective production of niacin leads to pellagra (DDD)unless there is sufficient amount of 
nicotinic acid supplied in the diet. 

 

Diagnosis : By Amino acid Analysis in the blood&urine.     @ Low level of Tryphtophan.

 

      @High level of tryphtophan&its indole derivatives excreted in the urine.

 

Pellagra:(DDD):Dermatits, skin lesion begins as photosensitivity occur symmetrically on face ,neck, 
wrist with erythema and scaling.

 

Dementia with intermittent cerebellar ataxia.

 

Diarrhea.

 

 

The defect can be cured by giving 40-200mg of nicotinic acid daily

 

Normally 1% of tryptophan is converted to serotonin.

 

These cells synthesize the biologically active amine (5HT).

 

It is a potent vasoconstrictor and stimulator of smooth muscle contraction

 

 

Most of the serotonin is metabolized by oxidative deamination by the enzyme monoamine 
oxidase(MAO).

 

MAO inhibitor used as Antidepressant drug that lead to accumulation of serotonin and nor 
adrenalin in nerve endings that help in treatment of depression.

 

Carcinoid Syndrome

:

 

* It is acquired disease due to a tumor of argentaffin cells of the intestine .

 

*Commonest site is ileum and appendix.

 

* May  be benign or malignant.

 

*Excessive secretion of serotonin.

 

Most of  tryptophan taken by the diet is diverted to be metabolized by argentaffin cells through 
the serotonin pathway instead of kyneurinine pathway.

 

1%_________________60%

 

Normal                            Malignant tumor.

 

Biochemically: abnormally high level of 5HT.

 


background image

 

56

 

High level of 5HIAA in urine.     >25mg/day.

 

Sign of niacin deficiency due to diversion from kyneurinine pathway to serotonin pathway 

 

Symptoms: 

1-Flushing of the face. 

2-Diarrhea. 

3-Attack of Abd. Pain. 

4-Symptoms of pellagra.

 

 

 

 

 

 

 

Sulphur containing Amino Acids

 

Cystine       Cysteine        Methionine.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

S

 

(CH2)3

 

 

CHNH2

 

COOH

 

Methionine

 

 


background image

 

57

 

 

Methionine is essential ,it serves as precursor for the synthesis of cysteine and 
cystine.Cysteine and cystine are interconvertable

 

Methionine and cysteine present in proteins.

 

The sulfur containing amino acids are almost an  exclusive dietary source of sulfur to the 
body

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


background image

 

58

 

د

.

رعد

       

 

                                 

 Lec:7&8

 

Amino Acids Metabolism

 

Sulphur Containing Amino Acids

 

They are methionine,cyseine,cystine.

 

Methioinine is essential.

 

It serves as precursors for the synthesis of cysteine and cystine.

 

Both are non essential.

 

Cysteine and cystine are interconvertable.

 

The sulphur-containing AA are an exclusive dietary source of sulphur in the 
body

 

Sulphur containing Amino Acids

 

Cystine       Cysteine        Methionine

 

CH3

 

 

 

Methionine is essential ,it serves as precursor for the synthesis of cysteine and 
cystine.

 

Methionine and cysteine present in proteins.

 


background image

 

59

 

The sulfur containing amino acids are almost an  exclusive dietary source of 
sulfur to the body.

 

Methionine (Amino Acid that form Succinyl CoA)

 

It is one of four amino acids that form succinyl CoA.

 

It is converted to s-adenosylmethionine(SAM),the major methyl- group donor in 
one carbon metabolism.

 

It is also a source of homocysteine – a metabolite  associated with 

atherosclerosis and vascular disease

.

 

Metabolism of Methionine

 

3 parts

 

Utilization of methionine for transmethylation reactions.

 

Conversion of methionine to cysteine and cystine.

 

Degradation of cysteine and its conversion to specialized products

 

Metabolism of Sulphur containing Amino Acids(Cystein, cystine 
Methionine:

 

Cysteine Biosynthesis

 

Cysteine is synthesized from essential A.A.

 

methionine

 

Ist Step:

 

ATP+Methionine  

 Methionine adenosyl transferease

 S-Adenosyl 

methionine

 

SAM  serve as precursor for methyl group

 

ex. Nor epinephrine                                 Epinephrine

 

 


background image

 

60

 

 

 

S-Adenosylmethionine is highly reactive due to the presence of a 
positive charge. The enzyme  involved in the transfer of methyl 
group are called methyltransferase.

 

S-AM transfer the methyl group to an acceptor and gets itself 
converted to S- adenosylhomocysteine.

 

The loss of free energy in this reaction makes the methyl transfer 
irreversable.

 

2

nd

 step:

 

S-Adenosylmethionine                           S-Adenosyl homocysteine

 

SAM release its methyl group to a methyl acceptor  forming S- 
Adenosyl homocysteine

 


background image

 

61

 

 

3

rd

 Step:

 

S-Adenosyl homocysteine 

 

S-Adenosyl homocystinase  

Homocysteine+ Adenosine

 

S-Adenosyl homocysteine is cleaved by the homocysteinase enzyme to 
give homocysteine and adenosine need H2O and doesn't need any 
catalytic  action.

 

S-Adenosylhomocysteine is hydrolysed to homocysteine and 
adenosin

 

 

 


background image

 

62

 

4

th

 Step:

 

Homocysteine + Serine    Cystathionine synthetase    Cystathionine

 

This step is a condensation of homocystine with AA serine to form 
cystathionine need catalytic enzyme synthetase

 

5

th

 step:

 

Cystathionine   Cystasthionine lyase     Cysteine+ α ketobutyrate

 

 

Lyses of cysthionine to form cysteine and αketobutyrate  by the 
enzyme cystathionine lyase.

 

Fate: Cysteine is needed for protein synthesis and other body need.

 

αketobuty
rate is 
decarboxyl
ated to 
propionyl 
CoA.

 

 

رسم

 

توضيحي

 

1

Degradation &resynthesis of methionine

 


background image

 

63

 

After donation of the methyl group ,S- Adenososylhomocysteine is 
hydrolysed to homocystein and Adenosine.

 

Homocysteine has 2 fate:

 

Fate of homocysteine

 

If there is a deficiency of methionine ,homocysteine may be 
remethylated to methionine.

 

Or if there is adequate amount of methionine ie stores are adequate  
homocysteine may enter the transsulfuration  pathway  ,where it is 
converted to cysteine

 

Fate1: if inadequate stores of methionine

 

Homocysteine accept  a methyl group from  N –methyl THF in a 
reaction requiring  methylcobolamine  (co B12) .

 

The methyl group is transferred from B12 derivative  to homocysteine

 

Metabolic Diseases Related to 
Sulphur Amino Acids

 

Homocysteinuria:

 

# It is related to methionine 
metabolism.

 

# It is autosomal recessive disease.

 

#It is inborn error of metabolism due 
to deficiency of Cystathionine 
synthetase. .(step 4).

 

#Accumulation of homocystine and Its appearance in the urine.

 

# Cataract, Mental retardation, Taller than other group.

 

#Harmful treatable disease if diagnosed early.

 

#Diagnosis by amino acids analysis in the urine.

 


background image

 

64

 

#Increase homocystine in the urine.

 

#Treatment is supply of milk with no methionine and added cystein.

 

 

Relationship of homocysteine to vascular disease

 

Elevation of homocysteine accelerate oxidative damage inflammation 
and endothelial dysfunction ,and independent risk factor for occulsive 
vascular disease.

 

Epidemiological studies have shown that that plasma homocysteine is 
inversly related to the plasma levels of folate, B12 and B6 ,the three 
vitamine that involved in the conversion of homocysteine to 
methionine and cysteine

 

Supplementation of these vitamines has been shown to reduce  
circulating levels of homocysteine .

 

In addition large elevation of homocysteine  in blood as a result of  rare 
deficiency  in cystathionine synthetase  are seen in patients with  
classic homocysteinuria .

 

These individuals experience  premature vascular disease with about 
25% dying from thrombotic complications before 30 years of age.

 

Cystinuria

 

#Autosomal recessive inherited abnormality of tubular reabsorption.

 

#Excessive excretion of dibasic amino acids cystine, ornithine,arginine 
&lysine (25-40)times normal.

 

#The defect is in the renal reabsorption mechanism

 

#Cystine is relatively insoluble and become of a high concentration in 
the urine.

 

#precipitate  to form renal calculi. (cystine calculi).

 


background image

 

65

 

#Diagnosis by demonstrating excessive excretion of cystine in the 
urine.

 

#Management is to prevent  calculi formation by reducing urine 
concentration. High fluid intake, urinary alkalinizer , penicillamine.

 

Cystinosis

 

#Rare but serious disorders of cystine metabolism.

 

#Excessive deposition of cystine in different organ, kidney, bone 
marrow, cornea, conjunctiva.

 

#Generalized aminoaciduria with glucosuria.

 

#Harmful untreatable disease end with early death.

 

#Defect is unknown, may be due to impaired in the transport of cystine 
from the affected cells.

 

Creatinine

 

# It is one of the final product of Arginine, Glycine & Methionine.

 

#Creatine present in muscles, brain& blood.

 

#Creatinine is the anhydride of creatine formed by irreversible non 

enzymatic 
dehydration of 
muscle creatine.

 

 

 

 

 

 

 


background image

 

66

 

 

 

 

 

Creatinine is normally released from skeletal muscles to the circulation 
in a constant manner and excreted through complete filtration without 
reabsorption.

 

Interpretation of serum creatinine should consider certain factors:

 

1. Lower in children than adult, lower in female than male & lower 
during pregnancy .

 

2.Certain drugs(salicylate&cimitidine) increase creatinine by inhibiting 
tubular secretion of creatinine.

 

3.Some endogenous substances (acetoacetate) may affect the 
analytical method of measurement of creatinine 

 

Serum Creatinine is indirect measurement of Glomerular Filtration Rate 
(GFR)

 

Increase in serum creatinine is likely due to a fall in GFR.

 

Increase serum Creatinine( Decrease    GFR) could be due to:

 

1.Any diseases lead to impairment of renal perfusion.

 

2.Diseases lead to loss of the functioning nephrons (Acute&chronic 
glomerulonephritis).

 

3.Diseases whose pressure is increased on tubular side of the 
nephrons. 

 


background image

 

67

 

 

Normal Range: Serum Creatinine(0.6-1.4)mg/dl.

 

 Creatinine Clearance:(80-120)ml/min.

 

 

 


background image

 

68

 

 

 

 

 

The first three metabolic  reactions are common to the branched 
chain amino acids

 

1. Transamination.

 

2. Oxidative decarboxylation.

 

3. Dehydrogenation.

 

Transamination: the 3AA undergo transamination to form their 
respective ketoacids.

 


background image

 

69

 

 

 

 


background image

 

70

 

Metabolic Disorders of Branched Chain A.A.

 

Maple Syrup Urine Disease

 

Autosomal recessive disease.

 

Block in the metabolism of leucine, Isoleucine.

 

The oxidative decarboxylation of αketoacids do not occur.

 

Branched chain ketoacids accumulate in the urine.

 

Occurs at the end of the Ist week of life.

 

 

Intolerance to milk.

 

Mental retardation.

 

Smell of the urine is just like burned sugar

 

Diagnosis by urine chromatography.

 

Harmful untreatable disease.

 

Extensive brain damage in those who survive.

 

Death occurs at the end of Ist year.

 

 

Histidine

 

Usually metabolized through histidase which act on histidine to split 
off ammonia and form  urocanate. 

 


background image

 

71

 

 

 

 

                    

Histidine   on decarboxylation ,   gives the histamine              

#

              
    which regulate HCl secretion by gastric mucosa 

 

Histidinemia: due to defect histidase.

#

 

High level of histidine.

#

 

Mentally retarded with defect in speech

#

 

Harmful untreatable 

#

 

Arginine:

 

#Arginine is cleaved by arginase to give urea and produce ornithine 

 

#Hyperargininemia is inborn error of metabolism of arginine  due to 
the defect in the enzyme arginase.

 

#Nitric oxide(NO): arginine is the substrate for the production of 
nitric oxide(NO)by the enzyme nitric oxide synthase 

 


background image

 

72

 

 

Function of NO

 

 It  acts as endothelial derived releasing factor (EDRF) and cause 
smooth muscle relaxation. (General)

 

1. NO functions as a vasodilator and muscle relaxant. 

2. It is the key molecule in the regulation of blood flow and the 

blood pressure. 

3. NO acts as inhibitor of platelets aggregation and adhesion. 

4. It functions as a messenger molecule of the nervous system 

(neurotransmitter). 

5. NO mediate the bacterial action of macrophages. 

 

@RamiQays

 

 

 

 

 

 


background image

 

73

 

د

.

رعد

       

 

                                        

 Lec:9

 

Amino Acids Metabolism 

 

 

 

 

The first three metabolic  reactions are common to the branched chain 
amino acids

 

1. Transamination.

 

2. Oxidative decarboxylation. 

 

 


background image

 

74

 

3. Dehydrogenation.

 

Transamination: the 3AA undergo transamination to form their respective 
ketoacids.

 

 

 


background image

 

75

 

 

Metabolic Disorders of Branched Chain A.A.

 

Maple Syrup Urine Disease

 

Autosomal recessive disease.

 

Block in the metabolism of leucine, Isoleucine.

 

The oxidative decarboxylation of αketoacids do not occur.

 

Branched chain ketoacids accumulate in the urine.

 

Occurs at the end of the Ist week of life.

 

Intolerance to milk. 

 

Mental retardation. 

 

Smell of the urine is just like burned sugar 

 

Diagnosis by urine chromatography. 

 

Harmful untreatable disease. 

 

Extensive brain damage in those who survive. 

 

Death occurs at the end of Ist year.

 

Histidine

 

Usually metabolized through histidase which act on histidine to split 
off ammonia and form  urocanate. 

 


background image

 

76

 

Histidine on decarboxylation ,gives the histamine which regulate HCl 
secretion by gastric mucosa 

 

Histidinemia: due to defect histidase.

 

High level of histidine.

 

Mentally retarded with defect in speech

 

Harmful untratable

 

 

  

 

Arginine: 

 

Arginine is cleaved by arginase to give urea and produce ornithine  

 

Hyperargininemia is inborn error of metabolism of arginine  due to the 
defect in the enzyme arginase. 

 

Nitric oxide(NO): arginine is the substrate for the production of nitric 
oxide(NO)by the enzyme nitric oxide synthase  

 

 

 
Function of NO 
 It  acts as endothelial derived releasing factor (EDRF) and cause 
smooth muscle relaxation. (General) 

1. NO functions as a vasodilator and muscle relaxant. 


background image

 

77

 

2. It is the key molecule in the regulation of blood flow and the 

blood pressure. 

3. NO acts as inhibitor of platelets aggregation and adhesion. 
4. It functions as a messenger molecule of the nervous system 

(neurotransmitter). 

5. NO mediate the bacterial action of macrophages. 

Aminoaciduria 

Excessive excretion of A.A. in urine. 

2Types: 

1.Overflow Aminoaciduria.        2.Renal  Aminoaciduria. 

Renal Aminoaciduria: 

Defective in reabsorption of AA while the renal threshold is normal. 

Overflow  A.A. presented to the glomerulous over the renal 
threshold( above the reabsorptive ability of the tubules) either due 
to overproduction or due to accumulation of A.A  

 


background image

 

78

 

Overflow Specific: inherited diseases of AA metabolism presented to 
the glomerulous in a large amounts above the renal threshold. 

Phenylketonuria  

Tyrosinemia  

Homocystinuria  

Maple syrup Disease 

Overflow non specific: AA presented to the glomeruli are different 
AA not related  to each other over the renal threshold excreted in 
large amount in urine . 

Chronic Hepatitis 

Renal SpecificAA:defective reabsorption  

Group of AA related to each other share in their structures. 

Hartnup disease defective absorption of tryptophan in the 
intestine)& (defective reabsorption in the tubules) 

Cystinuria(group of related AA (cysteine glycine arginine  

Renal non specific: loss of more than one AA not related to each 
other due to defective reabsorption ability. 

Fanconi Syndrome 

Acquired condition due to defect in renal tubules usually multiple , 
(Generalized aminoaciduria). 

Phosphate, Glucose, Bicarbonate Loss) 

(Proximal renal tubular acidosis) 

It may be inherited or secondary to other conditions 

 

@RamiQays 

 


background image

 

79

 

 




رفعت المحاضرة من قبل: Oday Duraid
المشاهدات: لقد قام 21 عضواً و 212 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل