background image

 

Physiology of Muscle 

Continued.... 

Lecture 5 

By 

Dr. Mufeed Akram Taha 

FIBMS Neurology 

Clinical Attachment Turkey

 


background image

Excitability of muscle (Electrical 

Characteristics of Skeletal Muscle) 

 

The electrical events in skeletal muscle 

and the ionic fluxes that underlie 
them share distinct similarities to 
those in nerve, with quantitative 
differences in timing and magnitude. 

 


background image

-The resting membrane potential of 

skeletal muscle is about 

–90 mV. 

- The action potential lasts to 4 ms 

and is conducted along the muscle 
fiber at about 5 m/s.  

-The absolute refractory period is 1 to 

3 ms long. 

 


background image

Ion Distribution & Fluxes 

The distribution of ions across the muscle 

fiber membrane is similar to that across 
the nerve cell membrane. 

- As in nerves, depolarization is largely a 

manifestation of Na

+

 influx, and 

repolarization is largely a manifestation 
of K

+

 efflux. 


background image

Contractile Responses 

Muscle fiber membrane depolarization 

normally starts at the motor end 
plate, the specialized structure under 
the motor nerve ending. The action 
potential is transmitted along the 
muscle fiber and initiates the 
contractile response. 

 


background image

The Muscle Twitch 

A single action potential causes a brief 

contraction followed by relaxation. 
This response is called a muscle 
twitch.
 The twitch starts about 2 ms 
after the start of depolarization of 
the membrane, before repolarization 
is complete.  


background image

The duration of the twitch varies with 

the type of muscle being tested. 
"Fast" muscle fibers, primarily those 
concerned with fine, rapid, precise 
movement, have twitch durations as 
short as 7.5 ms. "Slow" muscle 
fibers, principally those involved in 
strong, gross, sustained movements, 
have twitch durations up to 100 ms. 

 


background image

The  electrical  and  mechanical  responses  of  a  mammalian  skeletal 
muscle fiber to a single maximal stimulus.
 The electrical response (mV 
potential  change)  and  the  mechanical  response  (T,  tension  in  arbitrary 
units) are plotted on the same abscissa (time). The mechanical response 
is relatively long-lived compared to the electrical response that initiates 
contraction. 


background image

Molecular Basis of Contraction 

 

The process by which the contraction of 

muscle is brought about is a sliding of the 
thin filaments over the thick filament. The 
width of the A bands is constant, where as 
the 

Z lines move closer together 

when 

the muscle contracts and further apart 
when it relaxes. 

 


background image

-The sliding during muscle 

contraction occurs when the 
myosin heads bind firmly to actin, 
bend at the junction of the head 
with the neck, and then detach, 
this is called "Power Stroke"


background image

-Each power stroke shortens the 

sarcomere about 10 nm. 

-The "power stroke" depends on the 

simultaneous hydrolysis of ATP

-Many myosin heads cycle at or near 

the same time, and they cycle 
repeatedly, producing gross muscle 
contraction.  

 


background image

-Each thick filament has about 500 

myosin heads, and each head cycles 
about five times per second during a 
rapid contraction. 

 


background image

Sliding of actin on myosin during contraction so 
that Z lines move closer together. 


background image

Excitation

–Contraction coupling 

The process by which depolarization of the 

muscle fiber initiates contraction is called 
excitation

–contraction coupling.  

The action potential is transmitted to all 

the fibrils in the fiber via the T system. It 
triggers the release of Ca

2+

 from the 

terminal cisterns, Ca

2+

  initiate 

contraction by binding to troponin C .  

 


background image

-In resting muscle, troponin I is bound to 

actin and tropomyosin and covers the 
sites where myosin heads interact with 
actin. 

- Ca

2+

 binds to troponin C and this binding 

results in a weakening of the troponin I 
interaction with actin and this permits 
tropomyosin to move laterally .This 
movement exposes the actin binding site 
for myosin head ,ATP splits to ADP and 
contraction occurs . 

 


background image

-Shortly after releasing Ca

2+

 The 

Sarcoplasmic reticulum pump uses 
energy from ATP hydrolysis to remove 
Ca

2+ 

 by active transport from the cytosol 

back into the terminal cisterns, where it 
is stored until released by the next action 
potential. 

-Once the Ca

2+

 concentration outside the 

reticulum has been lowered sufficiently, 
chemical interaction between myosin 
and actin ceases and the muscle relaxes. 

 


background image

-If transport of Ca

2+

 into the reticulum 

is inhibited, relaxation does not 
occur even though there are no 
more action potentials; the resulting 
sustained contraction is called a 
contracture. 

 


background image

Steps of contraction 

Steps of relaxation 


background image

Types of Contraction 

 1) Isometric Contraction 

Contraction of muscle without an 

appreciable decrease in the length of the 
whole muscle 

 2) Isotonic Contraction  

Contraction of muscle with approximation 

of the ends of the muscle (shortening of 
muscle) .This Contraction is usually 
against a constant load. 

 


background image

Summation of Contractions 

The electrical response of a muscle fiber 

to repeated stimulation is like that of 
nerve. The fiber is electrically refractory 
only during the rising and part of the 
falling phase of the spike potential. At 
this time, the contraction initiated by 
the first stimulus is just beginning  

-But the contractile mechanism does not 

have a refractory period 


background image

 repeated stimulation before relaxation 

has occurred produces additional 
activation of the contractile elements 
and a response that is added to the 
contraction already present. This 
phenomenon is known as summation 
of contractions.
 

- The tension developed during 

summation is considerably greater than 
that during the single muscle twitch. 

 


background image

Tetanus 

With rapidly repeated stimulation, 

activation of the contractile 
mechanism occurs repeatedly before 
any relaxation has occurred, and the 
individual responses fuse into one 
continuous contraction. Such a 
response is called a tetanus (tetanic 
contraction).
 


background image

Tetanus is of 2 types: 

1)) Complete tetanus: when no 

relaxation occurs between stimuli 

2)) Incomplete tetanus: when periods 

of incomplete relaxation take place 
between the summated stimuli. 


background image

Energy Sources & Metabolism 

Muscle contraction requires energy, 

and muscle has been called "a 
machine for converting chemical 
energy into mechanical work." The 
immediate source of this energy is 
ATP, and this is formed by the 
metabolism of carbohydrates and 
lipids. 

 


background image

ATP is resynthesized from ADP by the 

addition of a phosphate group. Some 
of the energy for this endothermic 
reaction is supplied by the 
breakdown of glucose to CO

2

 and 

H

2

O. 

  

 


background image

Phosphorylcreatine 

Energy-rich phosphate compound found in 

muscle that can supply the energy for 
short periods. This compound 
(Phosphorylcreatine) which is hydrolyzed 
to creatine and phosphate groups with 
the release of considerable energy 

 


background image

-At rest, some ATP in the mitochondria 

transfers its phosphate to creatine, so that 
a phosphorylcreatine store is built up. 

-At rest and during light exercise, muscles 

utilize lipids in the form of free fatty acids 
as their energy source. 

-Thus, during exercise, much of the energy 

for phosphorylcreatine and ATP 
resynthesis comes from the breakdown of 
glucose to CO

2

 and H

2

O. 

 


background image

-Glucose which is either come from the 

bloodstream or form breakdown of glycogen in 
the cell will be metabolized by series of 
chemical reaction into pyruvate. 

-When adequate O

2

 is present, pyruvate enters 

the citric acid cycle and is metabolized

through this cycle and the so-called respiratory 
enzyme pathway

—to CO

2

 and H

2

O. This 

process is called aerobic glycolysis. The 
metabolism of glucose or glycogen to CO

2

 and 

H

2

O liberates sufficient energy to form large 

quantities of ATP from ADP. 

 


background image

- If O

2

 supplies are insufficient, the 

pyruvate formed from glucose does not 
enter the tricarboxylic acid cycle but is 
reduced to lactate. This process of 
anaerobic glycolysis is associated with 
the net production of much smaller 
quantities of energy-rich phosphate 
bonds, but it does not require the 
presence of O

2

 

 


background image

 

 

 

Thanks 




رفعت المحاضرة من قبل: Ismail AL Jarrah
المشاهدات: لقد قام 3 أعضاء و 99 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل