background image

 بسم هللا الرحمن الرحيم

Tubular function 2 


background image

Additional Examples of 

Secondary Active Transport

• Like glucose reabsorption, 

amino acid 

reabsorption is 

most marked in the early portion of the 

proximal 

convoluted

tubule.

• Absorption in this location resembles absorption in the 

intestine . 

• The main carriers in the luminal membrane 

cotransport Na

+

whereas the carriers in the 

basolateral membranes are not Na

+

-dependent. 

• Na

+

is pumped out of the cells by 

Na

+

-K

+

ATPase

and 

the amino acids leave by 

passive or facilitated 

diffusion 

to the interstitial fluid. 


background image

Additional Examples of 

Secondary Active Transport

• Some Cl

-

is reabsorbed with Na

+

and K

+

in the 

thick ascending limb of the loop of Henle . 

• In addition, 

two members 

of a family of Cl

-

channels have been identified in the kidney.

• The family is characterized by 

12 

transmembrane domains

, and members of it 

are also found in muscle and other tissues.


background image

Tubuloglomerular Feedback &       

Glomerulotubular Balance

• Signals from the renal tubules feed back to affect 

glomerular filtration.

• As the 

rate of flow 

through the ascending limb of the loop 

of Henle and first part of the distal tubule increases, 

glomerular filtration in the same nephron decreases, and, 

conversely, a 

decrease in flow 

increases the GFR . 

• This process, which is called 

tubuloglomerular feedback

,

tends to maintain the constancy of the load delivered to 

the distal tubule .

• The sensor for the response appears to be the 

macula 

densa

, and GFR is adjusted by constriction or dilation of the 

afferent arteriole

• Constriction may be mediated by 

thromboxane A

2


background image

Tubuloglomerular Feedback &       

Glomerulotubular Balance

• Conversely

, an increase in GFR causes an increase in the 

reabsorption of solutes, and consequently of water, 

primarily in the proximal tubule, so that in general the 

percentage of the solute reabsorbed is held constant. 

• This process is called 

glomerulotubular balance

and it is 

particularly prominent for Na

+

.

• The change in Na

+

reabsorption occurs within seconds 

after a change in filtration, so it seems unlikely that an 

extrarenal humoral factor is involved.

• One factor is the 

oncotic pressure

in the peritubular

capillaries. 

• When the GFR is high, there is a relatively large increase in 

the oncotic pressure of the plasma by the time it reaches 

the 

efferent arterioles and their capillary branches

. This 

increases the reabsorption of Na

+

from the tubule. 


background image

REGULATION OF NA

+

& CL

-

EXCRETION

• Na

+

is filtered in large amounts, but it is actively 

transported out of all portions of the tubule 

except the 

thin loop of Henle.

• Normally, 

96% 

to well over 

99% 

of the filtered 

Na

+

is reabsorbed.

• Most of the 

Na

+

is reabsorbed with Cl

-

, but some 

is reabsorbed in the processes by which one Na

+

ion enters the bloodstream 

for each H

+

ion 

secreted by the tubules, and in the distal tubules 

a small amount is actively reabsorbed in 

association with the 

secretion of K

+


background image

Regulation of Na

+

Excretion

• Because Na

+

is the 

most abundant 

cation in ECF 

and because Na

+

salts account for over 

90%

of 

the 

osmotically active 

solute in the plasma and 

interstitial fluid, the amount of Na

+

in the body 

is 

a prime determinant of the ECF volume.

• Through the operation of the regulatory 

mechanisms, the amount of Na

+

excreted 

is 

adjusted to 

equal

the amount 

ingested

over a 

wide range of dietary intakes, and the individual 

stays in Na

+

balance. 

• Thus, 

urinary Na

+

output ranges from 

less than 1 

meq/d

on a low-salt diet to 

400 meq/d 

or more 

when the dietary Na

+

intake is high.


background image

Regulation of Na

+

Excretion

• In addition, there is a 

natriuresis

when saline is 

infused intravenously and a 

decrease in Na

+

excretion

when ECF volume is reduced.

• Variations in Na

+

excretion are effected by changes 

in the 

amount filtered

and the 

amount reabsorbed 

in 

the tubules. 

• The factors affecting the GFR, including 

tubuloglomerular feedback 

• Factors affecting Na

+

reabsorption include the 

circulating level of 

aldosterone

and 

other

adrenocortical hormones, the circulating level of 

ANP

and other 

natriuretic

hormones, the amount of 

angiotensin II 

and 

PGE

2

in the kidneys, and the rate 

of tubular secretion of H

+

and K

+


background image

Effects of Adrenocortical Steroids

• Adrenal mineralocorticoids such as aldosterone

increase tubular 

reabsorption of Na

+

in association 

with 

secretion of K

+

and H

+

and also 

Na

+

reabsorption

with Cl

-

.

• When these hormones are injected into 

adrenalectomized animals, there is a latent period of 

10-30 minutes before their effects on Na

+

reabsorption

become manifest, because of the time required for the 

steroids to 

alter protein synthesis via their action on 

DNA.

• The mineralocorticoids

act

primarily on the 

cortical 

collecting ducts.

• As noted , they act on 

P cells 

to increase the number 

of active 

ENaCs

in the apical membranes of these cells . 


background image

Renal P cell. Na

+

enters via the ENaCs in the apical membrane and is 

pumped into the interstitial fluid by Na

+

-K

+

ATPases in the basolateral

membrane. Aldosterone activates the genome to produce sgk and 

other proteins, and the number of active ENaCs is increased

.


background image

Effects of Adrenocortical Steroids

• In 

Liddle's syndrome

, mutations in the 

genes that code for the 

β subunit 

and less 

commonly the 

γ subunit 

of the 

ENaCs

cause 

them to become 

constitutively active 

in the 

kidney.

• This leads to 

Na

+

retention 

and 

hypertension


background image

Other Humoral Effects

• Reduction of 

dietary 

intake of 

salt

increases 

aldosterone secretion , producing marked but slowly 

developing decreases in Na

+

excretion.

• A variety of other humoral factors affect Na

+

reabsorption. 

• PGE

2

causes 

a natriuresis

, possibly by inhibiting Na

+

-K

+

ATPase .

Endothelin

and 

IL-1 

cause natriuresis, probably by 

increasing the formation of 

PGE

2

• ANP

and related molecules increase intracellular 

cGMP,

and this inhibits transport via the 

ENaCs

.  

• Inhibition of 

Na

+

-K

+

ATPase

by the other natriuretic

hormone, also increases Na

+

excretion.

Angiotensin II increases reabsorption

of Na

+

and HCO

3

-

by an action on the proximal tubules.


background image

Other Humoral Effects

• There is an appreciable amount of 

angiotensin-converting 

enzyme 

in the kidneys, and the kidneys convert  of the 

circulating angiotensin I reaching them to angiotensin II. In 

addition, 

angiotensin I is generated in the kidneys. 

• Prolonged exposure to high levels of circulating 

mineralocorticoids does not cause edema 

in otherwise 

normal individuals 

because eventually the kidneys 

escape from the effects of the steroids.

• This 

escape phenomenon

which may be due to increased 

secretion of 

ANP

• It appears to be reduced or absent in 

nephrosis, cirrhosis, 

and heart failure, 

and patients with these diseases continue 

to retain Na

+

and become edematous when exposed to 

high levels of mineralocorticoids. 


background image

REGULATION OF K

+

EXCRETION

• Much of the filtered K

+

is removed from the tubular 

fluid by 

active reabsorption

in the 

proximal

tubules , 

and K

+

is then 

secreted

into the fluid by the 

dista

tubular cells.

• The 

rate of K

+

secretion 

is proportionate to the 

rate of 

flow 

of the tubular fluid through the distal portions of 

the nephron, because with rapid flow there is less 

opportunity for the tubular K

+

concentration to rise to 

a value that stops further secretion.

• In the absence of complicating factors, 

the amount 

secreted 

is approximately 

equal to the K

+

intake

, and K

+

balance is maintained.

• In the distal tubules

, Na

+

is generally reabsorbed and 

K

+

is secreted

.


background image

REGULATION OF K

+

EXCRETION

• There is no rigid 

one-for-one

exchange, and 

much of the 

movement of K

+

is passive

.

• However, there is electrical coupling in the 

sense that 

intracellular migration of Na

+

tends 

to lower the potential difference across the 
tubular cell, and this favors movement of K

+

into the tubular lumen.

• Since 

Na

+

is also reabsorbed in association 

with 

H

+

secretion, there is competition for the 

Na

+

in the tubular fluid.


background image

REGULATION OF K

+

EXCRETION

• K

+

excretion is decreased 

when the amount of 

Na

+

reaching the distal tubule is 

small

, and it is also 

decreased when 

H

+

secretion 

is 

increased

• When 

total body K

+

is high

, H

+

secretion is inhibited, 

apparently because of intracellular alkalosis; K

+

secretion and excretion are therefore facilitated.

• Conversely

, the cells are acidic in 

K

+

depletion

, and K

+

secretion declines. 

• Apparently the K

+

secretory mechanism is capable of 

"

adaptation

," because the amount of K

+

excreted 

gradually increases when a constant large dose of a 
potassium salt is administered for a prolonged period.


background image

Hypokalemia

Hypokalemia

is common and can be severe.

• In addition to its occurrence when there is 

excessive loss in the urine

, it is occasionally 

seen in patients with excess loss in 

diarrheic 

stools

, in patients in whom K

+

is 

shifted

into 

cells by 

insulin

or 

β-adrenergic agonists

, and in 

patients with a prolonged 

low intake of K

+

• Hyperkalemia

is a more dangerous condition 

because of its effects on the heart , but 

it 

rarely occurs unless

renal function is 

depressed. 


background image

Renal handling of various plasma constituents in a 

normal adult human on an average diet

.


background image

THANK 

YOU          




رفعت المحاضرة من قبل: Ismail AL Jarrah
المشاهدات: لقد قام عضو واحد فقط و 48 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل