background image

Part 2--- special embryology

 

skeletal system

 


background image

• ^ skeletal system develops from paraxial & lateral plate 

(parietal layer) mesoderm,& neural crest. 

• ^ paraxial mesoderm forms a segmented series of tissue 

blocks on each side of neural tube, known as 

somitomeres 

 in 

^ head region, & 

somites 

from occipital region & caudally. 

• Somites differentiate into a ventromedial, ^ 

sclerotome, 

& a 

dorsolateral part, ^ 

dermomyotome. 

 

• At ^ end of 4

th

 week, sclerotome cells become polymorphous 

& loosely organized tissue , ^ mesenchyme which may be 
either: fibroblasts, chondroblasts, or osteoblasts( bone-
forming cells). 


background image

1-skull

 

^ skull is divided into 2 parts:  

1- neurocranium, which forms a protective case around ^ brain. 

2- viscerocranium which forms ^ skeleton of ^ face. 

 

            NEUROCRANIUM  

Divided into 2 portions: (1)-^ membranous part, consists of flat 
bones, which surround ^ brain as a vault. & (2)- ^ cartilaginous 
part or chondrocranium, which forms bones of base of ^ skull. 

     

Membranous neurocranium: 

 derived from neural crest cells 

& paraxial mesoderm. Mesenchyme from these two sources 
invests ^ brain & undergoes membranous ossification.  


background image

• ^ result is formation of no. of flat bones characterized by  ^ 

presence of needle like bone specules. These specules 
progressively radiate from primary ossification centers toward 
^ periphery. 

• With further growth during fetal & postnatal life, 

membranous bones enlarge by apposition of new layers on ^ 
outer surface & by simultaneous osteoclastic resorption from 
^ inside. 

• At birth, ^ flat bones of skull are separated from each other by 

a narrow seems of connective tissue, ^ sutures.  

• Sutures are also derived from 2 sources: neural crest cells 

(sagittal sutures) & paraxial mesoderm (coronal sutures). 

• At points where more than 2 bones meet, sutures are wide& 

are called fontanelles.   


background image

background image

background image

background image

• ^ most prominent of these is ^ anterior fontanelle, which is 

found where ^ 2 parietal & 2 frontal bones meet. 

• Fontanelles allow ^ bones of ^ skull to overlap(molding

during birth. 

• Several sutures & fontanelles remain membranous for a 

considerable time after birth. The bones of ^ vault continue to 
grow after birth. 

• ^ bones of ^ vault continue to grow after birth, mainly 

because ^ brain grows. Although a 5- to 7- year-old child has 
nearly all of his or her cranial capacity, some sutures remain 
open until adulthood. 

• In most cases, ^ ant. fontanelle  closes by 18 months of age, & 

^ posterior fontanelle closes by 1-2 months of age.   


background image

Cartilaginous Neurocranium

 

• It consists of a no. of separate cartilages. Those that lie in 

front of ^ rostral limit of ^ notochord, which ends at ^ level of 
^ pituitary gland in ^ center of ^ sella turcica, are derived from 
neural crest cells. They form ^ prechordal chondrocranium

• Those that lie posterior to this limit arise from occipital 

sclerotomes formed by paraxial mesoderm & form ^ chordal 
chondrocranium. 

• The base of skull is formed when these cartilages fuse & ossify 

by endochondral ossification. 


background image

viscerocranium

 

• It consists of ^ bones of ^ face, is formed mainly from ^ 1

st

 2 

pharyngeal arches. 

• ^ 1

st

 arch gives rise to dorsal portion, ^ maxillary process, 

which extends forward beneath ^ region of eye & gives rise to 
^ maxilla^ zygomatic bone& part of ^ temporal bone

• ^ ventral portion, ^ mandibular process, contains ^ meckel 

cartilage. 

• Mesenchyme around  ^ meckel cartilage condenses & ossifies 

by membranous ossification to give rise to ^ mandible. 

• ^ meckel cartilage disappears except in ^ sphenomandibular 

ligament. 


background image

• ^ dorsal tip of ^ mandibular process, along with that of ^ 2

nd

 

pharyngeal arch, later gives rise to ^ incus, malleus & stapes. 

     ossification of these 3 ossicles begins in ^ 4

th

 month making             

these ^ 1

st

 bones to become fully ossified. 

• At first, ^ face is small in comparison to neurocranium. This 

appearance is caused by: 

• 1-virtual absence of ^ paranasal sinuses. 
• 2-^ small size of bones, particularly ^ jaws. 
• With ^ development of air sinuses, & appearance of teeth, ^ 

face loses its babyish characteristics. 


background image

LIMBS

 

• AT ^ end of 4

th

 week of development, limb buds become 

visible as outpocketings from ^ ventrolateral body wall. 

• ^ forelimb appears 1

st

 followed by hindlimb 1-2 days later. 

• Initially, ^ limb buds consists of a mesenchymal core derived 

from ^ parietal layer of lateral mesoderm that will form ^ 
bones & connective tissues of ^ limb, covered by a layer of 
cuboidal ectoderm. 

• Ectoderm at ^ distal part of ^ limb thickens & forms ^ apical 

ectodermal ridge (AER). 

• Ridge exerts an inductive influence on adjacent 

mesenchyme causing it to remain as a population of 
undifferentiated, rapidly proliferating cells,^ progress zone. 

 


background image

background image

• As ^ limb grows, cells farther from ^ influence of ^ AER begin 

to differentiate into cartilage & muscle. Thus ^ development 
of ^ limb proceeds proximodistally.  

• In 6-week-old embryos, ^ terminal portion of ^ limb buds 

become flattened to form ^ hand-& footplates  & is separated 
from ^ proximal segment by a circular constriction. 

• Later, a 2

nd

 constriction divides ^ proximal portion into 2 

segments, & ^ main parts of ^ extremities can be recognized. 

• Fingers & toes are formed when cell death in ^ AER separates 

this ridge into 5 parts. 

• Further formation of ^ digits depends on their continued 

outgrowth under ^ influence of ^ 5 segments of ridge 
ectoderm, condensation of ^ mesenchyme to form 
cartilaginous digital rays, & ^ death of intervening tissue 
between rays.   


background image

• Development of ^ upper & lower limbs is similar except that 

morphogenesis of ^ lower limb is approximately 1-2 days 
behind that of ^ upper limb. 

• Also during ^ 7

th

 week of gestation, ^ limbs rotate in apposite 

directions. 

• ^ upper limb rotates 90 degree laterally, so that ^ extensor 

muscles lie on ^ lat. & post. surface & thumbs lie laterally, 
whereas ^ lower limb rotates approximately 90 d medially, 
placing ^ extensor muscles on ^ ant. surface & ^ big toe 
medially. 

• While ^ external shape is established, mesenchyme in ^ buds 

begins to condense, & these cells differentiate into 
chondrocytes.  


background image

• By ^ 6

th

 week of development, ^ 1

st

 hyaline cartilage models, 

foreshadowing ^bones of ^ extremities, are formed by these 
chondrocytes. 

• Ossification of ^ bones of ^ extremities, endochondral 

ossification, begins by ^ end of embryonic period.  

• Primary  ossification centers, are present in all long bones of  

^limbs by ^ 12

th

 week of development. 

• From ^ primary  center in ^ shaft or diaphysis of ^ bone, 

endochondral ossification gradually progresses toward ^ ends 
of ^ cartilaginous model. 

• At birth, ^ diaphysis of ^ bone is usually completely ossified, 

but ^ 2 ends, ^ epiphyses, are still cartilaginous, shortly 
thereafter, ossification centers arise in ^ epiphyses.  


background image

Vertebrate & ^ Vertebral Column

 

• Vertebrate form from ^ sclerotome portion of somites. 
• A typical vertebra consists of a vertebral arch & foramen 

(through which ^ spinal cord passes), a body, transverse 
processes, & spinous process. 

• During ^ 4

th

 week , sclerotome cells migrate around  ^ spinal 

cord & notochord to merge with cells from ^ opposite somite 
on ^ other side of ^ neural tube. 

• As development continues, ^ sclerotome portion of each 

somite undergoes a process called resegmentation. 

• Resegmentation occurs  when ^ caudal half of each scletome 

grows into & fuses with ^ cephalic subjacent sclerotome.  


background image

• Thus, each vertebra is formed from ^ combination of ^ caudal 

half of one somite  cranial half of its neighbor.  

• Mesenchymal cells between cephalic & caudal parts of ^ 

original sclerotome segment, do not proliferate but fill ^ space 
between 2 precartilaginous vertebral bodies, lead to 
formation of intervertebral disc.  

• Although ^ notochord regress in ^ region of vertebral bodies, 

it persists & enlarges in ^ region of intervertebral disc. Here it 
contributes to ^ nucleus pulposus, which is later surrounded 
by circular fibers of ^ annulus fibrosus. 

• Combined, these 2 structures form ^ intervertebral disc. 


background image

• Resegmentation of sclerotomes  into definitive vertebrae 

causes ^ myotomes to bridge ^ intervertebral discs, & this 
alteration gives them ^ capacity to move ^ spine. 

• For the same reason, intersegmental arteries, at first lying 

between ^ sclerotomes, now pass midway over ^ vertebral 
bodies. 

• Spinal nerves, however, come to lie near ^ disc & leave ^ 

vertebral column through ^ intervertebral foramina. 

• As ^ vertebrae form, 2 primary curves established: thoracic & 

sacral curvatures. 

•  later, 2 secondary curves established: cervical & lumbar 

curvatures. 


background image

Ribs & Sternum

 

• ^ Bony portion of each rib is derived from sclerotome cells 

that remain in paraxial mesoderm. 

• Costal cartilages are formed by sclerotome cells that migrate 

across ^ lateral somitic frontier into ^ adjacent lateral plate 
mesoderm. 

• Sternum is formed independently in parietal layer of lateral 

plate mesoderm in  ventral body wall as 2 sternal bands , & 
these later fuse to form cartilaginous models of ^ manubrium, 
sternebrae, & xiphoid process. 




رفعت المحاضرة من قبل: Ismail AL Jarrah
المشاهدات: لقد قام عضوان و 83 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل